Likelihood estimation of the extremal index

被引:64
作者
Süveges M. [1 ]
机构
[1] École Polytechnique Fédérale de Lausanne, IMA-FSB-EPFL, Station 8
关键词
Central England temperature data; Clusters; Diagnostic; Extremal index; Extreme value theory; Gaps; Local likelihood;
D O I
10.1007/s10687-007-0034-2
中图分类号
学科分类号
摘要
The article develops the approach of Ferro and Segers (J.R. Stat. Soc., Ser. B 65:545, 2003) to the estimation of the extremal index, and proposes the use of a new variable decreasing the bias of the likelihood based on the point process character of the exceedances. Two estimators are discussed: a maximum likelihood estimator and an iterative least squares estimator based on the normalized gaps between clusters. The first provides a flexible tool for use with smoothing methods. A diagnostic is given for condition D (2)(un), under which maximum likelihood is valid. The performance of the new estimators were tested by extensive simulations. An application to the Central England temperature series demonstrates the use of the maximum likelihood estimator together with smoothing methods. © 2007 Springer Science+Business Media, LLC.
引用
收藏
页码:41 / 55
页数:14
相关论文
共 13 条
  • [1] Chernick M.R., Hsing T., McCormick W.P., Calculating the extremal index for a class of stationary sequences, Adv. Appl. Probab., 23, pp. 835-850, (1991)
  • [2] Fan J., Gijbels I., Local Polynomial Modelling and Its Applications, (1996)
  • [3] Ferro C.A.T., Statistical Methods for Clusters of Extreme Values, (2003)
  • [4] Ferro C.A.T., Segers J., Inference for clusters of extreme values, J. R. Stat. Soc., Ser. B, 65, pp. 545-556, (2003)
  • [5] Hsing T., Extremal index estimation for a weakly dependent stationary sequence, Ann. Stat., 21, pp. 2043-2071, (1993)
  • [6] Laurini F., Tawn J., New estimators for the extremal index and other cluster characteristics, Extremes, 6, pp. 189-211, (2003)
  • [7] Leadbetter M.R., Extremes and local dependence in stationary sequences, Z. Wahrscheinlichkeitstheor. Verw. Geb., 65, pp. 291-306, (1983)
  • [8] Leadbetter M.R., Nandagopalan S., On exceedance point processes for stationary sequences under mild oscillation restrictions, Lect. Notes Stat., 51, pp. 69-80, (1989)
  • [9] Leadbetter M.R., Lindgren G., Rootzen H., Extremes and Related Properties of Random Sequences and Processes, (1983)
  • [10] Nandagopalan S., On the multivariate extremal index, J. Res. Natl. Inst. Stand. Technol., 99, pp. 543-550, (1994)