Proof of a three-loop relation between the Regge limits of four-point amplitudes in N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SYM and N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 8 supergravity

被引:0
作者
Stephen G. Naculich
Theodore W. Wecker
机构
[1] Bowdoin College,Department of Physics and Astronomy
关键词
Extended Supersymmetry; Scattering Amplitudes; Supergravity Models; Supersymmetric Gauge Theory;
D O I
10.1007/JHEP07(2022)043
中图分类号
学科分类号
摘要
A previously proposed all-loop-orders relation between the Regge limits of four-point amplitudes of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 supersymmetric Yang-Mills theory and N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 8 supergravity is established at the three-loop level. We show that the Regge limit of known expressions for the amplitudes obtained using generalized unitarity simplifies in both cases to a (modified) sum over three-loop ladder and crossed-ladder scalar diagrams. This in turn is consistent with the result obtained using the eikonal representation of the four-point gravity amplitude. A possible exact three-loop relation between four-point amplitudes is also considered.
引用
收藏
相关论文
共 25 条
[1]  
Naculich SG(2011) ≥ 4 JHEP 11 001-undefined
[2]  
Schnitzer HJ(2011) ≥ 4 JHEP 12 046-undefined
[3]  
Boucher-Veronneau C(2012) = 4 JHEP 01 041-undefined
[4]  
Dixon LJ(2008) = 8 JHEP 11 018-undefined
[5]  
Naculich SG(1969)undefined Phys. Rev. Lett. 23 53-undefined
[6]  
Nastase H(1992)undefined Nucl. Phys. B 388 570-undefined
[7]  
Schnitzer HJ(2015)undefined Phys. Lett. B 750 272-undefined
[8]  
Naculich SG(1998)undefined Nucl. Phys. B 530 401-undefined
[9]  
Nastase H(2012)undefined Phys. Lett. B 707 191-undefined
[10]  
Schnitzer HJ(1992)undefined Comments Nucl. Part. Phys. 20 325-undefined