A Density Problem for Sobolev Spaces on Planar Domains

被引:0
作者
Pekka Koskela
Yi Ru-Ya Zhang
机构
[1] University of Jyväylä,Department of Mathematics and Statistics
来源
Archive for Rational Mechanics and Analysis | 2016年 / 222卷
关键词
Sobolev Space; Hausdorff Distance; Lipschitz Domain; Planar Domain; Jordan Domain;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that for a bounded, simply connected domain Ω⊂R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega \subset {\mathbb{R}^{2}}}$$\end{document}, the Sobolev space W1,∞(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${W^{1,\,\infty}(\Omega)}$$\end{document} is dense in W1,p(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${W^{1,\,p}(\Omega)}$$\end{document} for any 1≦p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1\leqq p < \infty}$$\end{document}. Moreover, we show that if Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega}$$\end{document} is Jordan, then C∞(R2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C^{\infty}({\mathbb{R}^{2}})}$$\end{document} is dense in W1,p(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${W^{1,\,p}(\Omega)}$$\end{document} for 1≦p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1\leqq p < \infty}$$\end{document}.
引用
收藏
页码:1 / 14
页数:13
相关论文
共 9 条
[1]  
Bishop C.J.(1996)A counterexample concerning smooth approximation Proc. Am. Math. Soc. 124 3131-3134
[2]  
Gehring F.W.(1962)An inequality in the theory of conformal mapping J. Math. Pures Appl. (9) 41 353-361
[3]  
Hayman W.K.(2007)A density result for Sobolev spaces in dimension two, and applications to stability of nonlinear Neumann problems, J Differ. Equ. 237 27-60
[4]  
Giacomini A.(1987)Approximation of Sobolev functions in Jordan domains Ark. Mat. 25 255-264
[5]  
Trebeschi P.(1994)Smooth approximation of Sobolev functions on planar domains J. London Math. Soc. 49 309-330
[6]  
Lewis J. L.(undefined)undefined undefined undefined undefined-undefined
[7]  
Smith W.(undefined)undefined undefined undefined undefined-undefined
[8]  
Stanoyevitch A.(undefined)undefined undefined undefined undefined-undefined
[9]  
Stegenga D.A.(undefined)undefined undefined undefined undefined-undefined