The low-energy neutral atom imager for IMAGE

被引:0
作者
T.E. Moore
D.J. Chornay
M.R. Collier
F.A. Herrero
J. Johnson
M.A. Johnson
J.W. Keller
J.F. Laudadio
J.F. Lobell
K.W. Ogilvie
P. Rozmarynowski
S.A. Fuselier
A.G. Ghielmetti
E. Hertzberg
D.C. Hamilton
R. Lundgren
P. Wilson
P. Walpole
T.M. Stephen
B.L. Peko
B. Van Zyl
P. Wurz
J.M. Quinn
G.R. Wilson
机构
[1] NASA Goddard Space Flight Center,
[2] Lockheed Martin Advanced Technology Center,undefined
[3] University Of Maryland,undefined
[4] University Of Denver,undefined
[5] University Of Bern,undefined
[6] University Of New Hampshire,undefined
[7] Mission Research Corp.,undefined
来源
Space Science Reviews | 2000年 / 91卷
关键词
Solar Wind; Neutral Atom; Interstellar Medium; Plasma Heating; Conversion Technology;
D O I
暂无
中图分类号
学科分类号
摘要
The `Imager for Magnetosphere-to-Aurora Global Exploration’ (IMAGE) will be launched early in the year 2000. It will be the first mission dedicated to imaging, with the capability to determine how the magnetosphere changes globally in response to solar storm effects in the solar wind, on time scales as short as a few minutes. The low energy neutral atom (LENA) imager uses a new atom-to-negative ion surface conversion technology to image the neutral atom flux and measure its composition (H and O) and energy distribution (10 to 750 eV). LENA uses electrostatic optics techniques for energy (per charge) discrimination and carbon foil time-of-flight techniques for mass discrimination. It has a 90°×° field-of-view in 12 pixels, each nominally 8°×°. Spacecraft spin provides a total field-of-view of 90°×360°, comprised of 12×45 pixels. LENA is designed to image fast neutral atom fluxes in its energy range, emitted by auroral ionospheres or the sun, or penetrating from the interstellar medium. It will thereby determine how superthermal plasma heating is distributed in space, how and why it varies on short time scales, and how this heating is driven by solar activity as reflected in solar wind conditions.
引用
收藏
页码:155 / 195
页数:40
相关论文
共 54 条
[1]  
Collin H. L.(1998)The Seasonal Variation of Auroral Ion Beams Geophys. Res. Lett. 25 4071-undefined
[2]  
Peterson W. K.(1988)Influence of the Interplanetary Magnetic Field Orientation on Polar Cap Ion Trajectories: Energy Gain and Drift Effects J. Geophys. Res. 93 7565-undefined
[3]  
Lennartsson O.W.(1977)H-Source Development at ANL IEEE Trans. Nucl. Sci. NS-24 1597-undefined
[4]  
Drake J. F.(1994)Mass Spectrograph for Imaging Low-Energy Atoms Opt. Eng. 33 362-undefined
[5]  
Delcourt D. C.(1994)Statistical Survey of Pitch Angle Distributions in Core (0–50 eV) Ions from Dynamics Explorer 1: Outflow in the Auroral Zone, Polar Cap, and Cusp J. Geophys. Res. 99 17483-undefined
[6]  
Fasola J.(1979)Time-Of-Flight Technique for Particle Identification at Energies from 2–400 keV/Nucleon Nucl. Instr. Meth. 165 537-undefined
[7]  
Ghielmetti A. G.(1992)A New Technique for Planetary Space Sci. 41 307-undefined
[8]  
Shelley E. G.(1987) Measurement of the Composition of Neutral Gas in Interplanetary Space J. Geophys. Res. 92 12275-undefined
[9]  
Fuselier S.(1995)Statistical and Functional Representation of the Pattern of Auroral Energy Flux, Number Flux, and Conductivity Rev. Geophys. 33 175-undefined
[10]  
Wurz P.(1999)The Geopause Geophys. Res. Lett. 26 1-undefined