On algebraic relations for Ramanujan’s functions

被引:0
|
作者
Carsten Elsner
Iekata Shiokawa
机构
[1] University of Applied Sciences,Fachhochschule für die Wirtschaft
[2] Keio University,Department of Mathematics
来源
The Ramanujan Journal | 2012年 / 29卷
关键词
Algebraic independence; Ramanujan functions; Nesterenko’s theorem; Independence criterion; Resultants; 11J85; 11J91; 11F27;
D O I
暂无
中图分类号
学科分类号
摘要
Let P,Q, and R denote the Ramanujan Eisenstein series. We compute algebraic relations in terms of P(qi) (i=1,2,3,4), Q(qi) (i=1,2,3), and R(qi) (i=1,2,3). For complex algebraic numbers q with 0<|q|<1 we prove the algebraic independence over ℚ of any three-element subset of {P(q),P(q2),P(q3),P(q4)} and of any two-element subset of {Q(q),Q(q2),Q(q3)} and {R(q),R(q2),R(q3)}, respectively. For all the results we use some expressions of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P(q^{i_{1}}), Q(q^{i_{2}}) $\end{document}, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R(q^{i_{3}}) $\end{document} in terms of theta constants. Computer-assisted computations of functional determinants and resultants are essential parts of our proofs.
引用
收藏
页码:273 / 294
页数:21
相关论文
共 50 条
  • [21] ALGEBRAIC STATEMENTS SIMILAR TO THOSE IN RAMANUJAN'S "LOST NOTEBOOK"
    Cooper, Curtis
    FIBONACCI QUARTERLY, 2014, 52 (05): : 91 - 101
  • [22] On certain Ramanujan's mock theta functions
    Gupta, Anju
    Proceedings of the Indian Academy of Sciences: Mathematical Sciences, 1993, 103 (03):
  • [23] A remark on Nesterenko’s theorem for Ramanujan functions
    Carsten Elsner
    Shun Shimomura
    Iekata Shiokawa
    The Ramanujan Journal, 2010, 21 : 211 - 221
  • [24] A remark on Nesterenko's theorem for Ramanujan functions
    Elsner, Carsten
    Shimomura, Shun
    Shiokawa, Iekata
    RAMANUJAN JOURNAL, 2010, 21 (02): : 211 - 221
  • [25] On a sequence of algebraic formulae of Ramanujan
    Pla, Juan
    MATHEMATICAL GAZETTE, 2012, 96 (536): : 201 - 206
  • [26] On Ramanujan's quartic theory of elliptic functions
    Berndt, BC
    Chan, HH
    Liaw, WC
    JOURNAL OF NUMBER THEORY, 2001, 88 (01) : 129 - 156
  • [27] Asymptotics and Ramanujan's mock theta functions: then and now
    Folsom, Amanda
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378 (2163):
  • [28] Ramanujan's inversion formulas for the lemniscate and allied functions
    Berndt, Bruce C.
    Bhargava, S.
    Journal of Mathematical Analysis and Applications, 1991, 160 (02)
  • [29] On Mr Ramanujan's empirical expansions of modular functions
    Mordell, LJ
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1919, 19 : 117 - 124
  • [30] A note on two of Ramanujan's mock theta functions
    McIntosh, Richard J.
    RAMANUJAN JOURNAL, 2024, 65 (04): : 1971 - 1980