On algebraic relations for Ramanujan’s functions

被引:0
|
作者
Carsten Elsner
Iekata Shiokawa
机构
[1] University of Applied Sciences,Fachhochschule für die Wirtschaft
[2] Keio University,Department of Mathematics
来源
The Ramanujan Journal | 2012年 / 29卷
关键词
Algebraic independence; Ramanujan functions; Nesterenko’s theorem; Independence criterion; Resultants; 11J85; 11J91; 11F27;
D O I
暂无
中图分类号
学科分类号
摘要
Let P,Q, and R denote the Ramanujan Eisenstein series. We compute algebraic relations in terms of P(qi) (i=1,2,3,4), Q(qi) (i=1,2,3), and R(qi) (i=1,2,3). For complex algebraic numbers q with 0<|q|<1 we prove the algebraic independence over ℚ of any three-element subset of {P(q),P(q2),P(q3),P(q4)} and of any two-element subset of {Q(q),Q(q2),Q(q3)} and {R(q),R(q2),R(q3)}, respectively. For all the results we use some expressions of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P(q^{i_{1}}), Q(q^{i_{2}}) $\end{document}, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R(q^{i_{3}}) $\end{document} in terms of theta constants. Computer-assisted computations of functional determinants and resultants are essential parts of our proofs.
引用
收藏
页码:273 / 294
页数:21
相关论文
共 50 条
  • [1] On algebraic relations for Ramanujan's functions
    Elsner, Carsten
    Shiokawa, Iekata
    RAMANUJAN JOURNAL, 2012, 29 (1-3): : 273 - 294
  • [2] Algebraic independence of values of Ramanujan's functions
    Nesterenko, Yu.V.
    Vestnik Moskovskogo Universiteta. Ser. 1 Matematika Mekhanika, 2001, (02): : 6 - 11
  • [3] Completions and algebraic formulas for the coefficients of Ramanujan’s mock theta functions
    David Klein
    Jennifer Kupka
    The Ramanujan Journal, 2021, 56 : 1029 - 1060
  • [4] Completions and algebraic formulas for the coefficients of Ramanujan's mock theta functions
    Klein, David
    Kupka, Jennifer
    RAMANUJAN JOURNAL, 2021, 56 (03): : 1029 - 1060
  • [6] Periodic points of algebraic functions related to a continued fraction of Ramanujan
    Dept. of Mathematical Sciences Indiana University, Purdue University at Indianapolis , 402 N. Blackford St., LD 270, Indianapolis
    IN
    46202, United States
    arXiv,
  • [7] Periodic points of algebraic functions related to a continued fraction of Ramanujan
    Akkarapakam, Sushmanth J.
    Morton, Patrick
    NEW YORK JOURNAL OF MATHEMATICS, 2024, 30 : 783 - 827
  • [8] Modular relations for the Rogers–Ramanujan functions with applications to partitions
    Nasser Abdo Saeed Bulkhali
    Ranganatha Dasappa
    The Ramanujan Journal, 2021, 56 : 121 - 139
  • [9] On further modular relations for the Rogers-Ramanujan functions
    Channabasavayya
    Keerthana, Gedela Kavya
    Dasappa, Ranganatha
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2025, 56 (01): : 113 - 124
  • [10] Some modular relations for the Gollnitz-Gordon functions and Ramanujan's modular equations
    Xia, Ernest X. W.
    Yao, Olivia X. M.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2014, 45 (01): : 53 - 74