Diagnostics of atmospheric water vapor content according to GPS measurements

被引:8
作者
Dembelov M.G. [1 ]
Bashkuev Y.B. [1 ]
Lukhnev A.V. [2 ]
Lukhneva O.F. [2 ]
San’kov V.A. [2 ]
机构
[1] Institute of Physical Material Science, Siberian Branch, Russian Academy of Sciences, ul. Sakhyanovoy 6, Ulan-Ude
[2] Institute of the Earth’s Crust, Siberian Branch, Russian Academy of Sciences, ul. Lermontova 128, Irkutsk
基金
俄罗斯基础研究基金会;
关键词
atmospheric water vapor; GPS measurements; meteorological data; refractive index; zenith tropospheric delay;
D O I
10.1134/S1024856015040053
中图分类号
学科分类号
摘要
A continuously operating GPS network, comprising seven permanent observation sites, is created to study the geodynamic processes in the Baikal region. Processing of the initial GPS data provides continuous atmospheric data in the form of total zenith tropospheric delay, which can be used for meteorological and climatological studies. The total delay is the sum of “dry”, or hydrostatic, and “wet” components. The wet component determines the total water vapor amount and amount of precipitable water over the measurement site. Thus, GPS measurements make it possible to obtain initial data for creating new numerical models of zenith tropospheric delay and total precipitable water vapor for meteorological applications. © 2015, Pleiades Publishing, Ltd.
引用
收藏
页码:291 / 296
页数:5
相关论文
共 10 条
[1]  
King R.W., Bock Y., Documentation for the GAMIT GPS, Analysis Software. Release 10.0, (2002)
[2]  
Lukhnev A.V., San'kov V.A., Miroshnichenko A.I., Ashurkov S.V., Byzov L.M., San'kov A.V., Bash- Y.B., Dembelov M.G., Kale E., GPS-measure-ments of recent crustal deformation in the junction zone of the rift segments in the central Baikal rift sys-tem, Rus. Geol. Geophys, 54, 11, pp. 1417-1426, (2013)
[3]  
Davis J., Herring T.A., Shapiro I.I., Rogers A.E.E., Elgered G., Geodesy by radio interferometery: Effects of atmospheric modeling errors on the estimates on baseline lengths, Radio Sci., 20, 6, pp. 1593-1607, (1985)
[4]  
Khutorova O.G., Vasil'ev A.A., Khutorov V.E., On prospects of investigation of the nonhomogeneous troposphere structure using the set of GPS-GLONASS receivers, Opt. Atmos. Okeana, 23, 6, pp. 510-514, (2010)
[5]  
Gomboev N.T., Tsydypov C.T., Refractive Prop-erties of the Atmosphere in Continental Regions, (1985)
[6]  
Bevis M., Businger S., Herring T., Rocken C., Anthes R.A., Ware R.H., GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System, J. Geophys. Res., D, 97, 14, pp. 15787-15801, (1992)
[7]  
Hopfield H.S., Two quartic tropospheric refractivity profile for correcting satellite data, J. Geophys. Res., 74, 18, pp. 4487-4499, (1969)
[8]  
Elgered G., Davis J.L., Herring T.A., Shapiro I.I., Geodesy by radio interferometry: Water vapor radi-ometry for estimation of the wet delay, J. Geophys. Res., B, 96, 4, pp. 6541-6555, (1991)
[9]  
Saastamoinen J., Atmospheric correction for the tro-posphere and stratosphere in radio ranging of satel-lites, The Use of Artificial Satellites for Geodesy. Geophys. Monogr. Ser. AGU, (1972)
[10]  
Sankov V.A., Lukhnev A.V., Miroshnitchenko A.I., Dobrynina A.A., Ashurkov S.V., Byzov L.M., Dembelov M.G., Kale E., Deversher Z., Con-temporary horizontal movements and seismicity of the South Baikal basin (Baikal rift system), Izv., Phys. Solid Earth, 50, 6, pp. 785-794, (2014)