Commutators in C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras and traces

被引:0
作者
Airat Bikchentaev
机构
[1] Kazan Federal University,
关键词
Hilbert space; Linear operator; Commutator; -algebra; Trace; 46L05; 46L30; 47C15;
D O I
10.1007/s43034-023-00260-6
中图分类号
学科分类号
摘要
Let H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document} be a Hilbert space, dimH=+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dim {\mathcal {H}}= +\infty $$\end{document}. Let X=U|X|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X=U|X|$$\end{document} be the polar decomposition of an operator X∈B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X\in {\mathcal {B}}({\mathcal {H}})$$\end{document}. Then, X is a non-commutator if and only if both U and |X| are non-commutators. A Hermitian operator X∈B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X\in {\mathcal {B}}({\mathcal {H}})$$\end{document} is a commutator if and only if the Cayley transform K(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {K}}(X)$$\end{document} is a commutator. Let H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document} be a Hilbert space and dimH≤+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dim {\mathcal {H}}\le +\infty $$\end{document}, A,B,P∈B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A,B, P\in {\mathcal {B}}({\mathcal {H}})$$\end{document} and P=P2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P=P^2$$\end{document}. If AB=λBA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AB=\lambda BA$$\end{document} for some λ∈C\{1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in {\mathbb {C}}{\setminus }\{1\}$$\end{document} then the operator AB is a commutator. The operator AP is a commutator if and only if PA is a commutator.
引用
收藏
相关论文
共 32 条
[1]  
Aluthge A(1990)On Integral Equ. Oper. Theory 13 307-315
[2]  
Berberian SK(1982)-hyponormal operators for Publ. Secc. Mat. Univ. Autòn. Barc. 26 5-7
[3]  
Bikchentaev A(1998)The algebra of thin operators is directly finite Int. J. Theor. Phys. 37 571-576
[4]  
Bikchentaev AM (2008)Majorization for products of measurable operators Sb. Math. 199 477-493
[5]  
Bikchentaev AM(2010)On the representation of elements of a von Neumann algebra in the form of finite sums of products of projections. III. Commutators in Math. Notes 87 768-773
[6]  
Bikchentaev AM(2010)-algebras Sib. Math. J. 51 971-977
[7]  
Bikchentaev AM(2011)On a lemma of Berezin Math. Notes 89 461-471
[8]  
Bikchentaev AM(2013)Commutativity of projections and trace characterization on von Neumann algebras Dokl. Math. 87 79-82
[9]  
Bikchentaev AM(2015)Commutation of projections and trace characterization on von Neumann algebras. II Int. J. Theor. Phys. 54 4482-4493
[10]  
Bikchentaev AM(2015)Commutativity of operators and characterization of traces on Math. Notes 98 382-391