Pre-Flight Calibration of the Mars 2020 Rover Mastcam Zoom (Mastcam-Z) Multispectral, Stereoscopic Imager

被引:0
作者
Alexander G. Hayes
P. Corlies
C. Tate
M. Barrington
J. F. Bell
J. N. Maki
M. Caplinger
M. Ravine
K. M. Kinch
K. Herkenhoff
B. Horgan
J. Johnson
M. Lemmon
G. Paar
M. S. Rice
E. Jensen
T. M. Kubacki
E. Cloutis
R. Deen
B. L. Ehlmann
E. Lakdawalla
R. Sullivan
A. Winhold
A. Parkinson
Z. Bailey
J. van Beek
P. Caballo-Perucha
E. Cisneros
D. Dixon
C. Donaldson
O. B. Jensen
J. Kuik
K. Lapo
A. Magee
M. Merusi
J. Mollerup
N. Scudder
C. Seeger
E. Stanish
M. Starr
M. Thompson
N. Turenne
K. Winchell
机构
[1] Cornell University,Department of Astronomy
[2] Cornell University,Cornell Center for Astrophysics and Planetary Science
[3] Massachusetts Institute of Technology,Department of Earth, Atmospheric, and Planetary Sciences
[4] Arizona State University,School of Earth and Space Exploration
[5] Jet Propulsion Laboratory,Niels Bohr Institute
[6] Malin Space Science Systems,Earth, Atmospheric, and Planetary Sciences Department
[7] University of Copenhagen,Geology Department
[8] USGS Astrogeology Science Center,Geography Department
[9] Purdue University,Division of Geological and Planetary Sciences
[10] Johns Hopkins Applied Physics Laboratory,Centre for Terrestrial and Planetary Exploration
[11] Space Science Institute,undefined
[12] Joanneum Research Forschungsgesellschaft mbH,undefined
[13] Western Washington University,undefined
[14] University of Winnepeg,undefined
[15] California Institute of Technology,undefined
[16] The Planetary Society,undefined
[17] University of Winnipeg,undefined
来源
Space Science Reviews | 2021年 / 217卷
关键词
Calibration; Camera; Mars;
D O I
暂无
中图分类号
学科分类号
摘要
The NASA Perseverance rover Mast Camera Zoom (Mastcam-Z) system is a pair of zoomable, focusable, multi-spectral, and color charge-coupled device (CCD) cameras mounted on top of a 1.7 m Remote Sensing Mast, along with associated electronics and two calibration targets. The cameras contain identical optical assemblies that can range in focal length from 26 mm (25.5∘×19.1∘FOV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$25.5^{\circ }\, \times 19.1^{\circ }\ \mathrm{FOV}$\end{document}) to 110 mm (6.2∘×4.2∘FOV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$6.2^{\circ } \, \times 4.2^{\circ }\ \mathrm{FOV}$\end{document}) and will acquire data at pixel scales of 148-540 μm at a range of 2 m and 7.4-27 cm at 1 km. The cameras are mounted on the rover’s mast with a stereo baseline of 24.3±0.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$24.3\pm 0.1$\end{document} cm and a toe-in angle of 1.17±0.03∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.17\pm 0.03^{\circ }$\end{document} (per camera). Each camera uses a Kodak KAI-2020 CCD with 1600×1200\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1600\times 1200$\end{document} active pixels and an 8 position filter wheel that contains an IR-cutoff filter for color imaging through the detectors’ Bayer-pattern filters, a neutral density (ND) solar filter for imaging the sun, and 6 narrow-band geology filters (16 total filters). An associated Digital Electronics Assembly provides command data interfaces to the rover, 11-to-8 bit companding, and JPEG compression capabilities. Herein, we describe pre-flight calibration of the Mastcam-Z instrument and characterize its radiometric and geometric behavior. Between April 26th\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^{th}$\end{document} and May 9th\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^{th}$\end{document}, 2019, ∼45,000 images were acquired during stand-alone calibration at Malin Space Science Systems (MSSS) in San Diego, CA. Additional data were acquired during Assembly Test and Launch Operations (ATLO) at the Jet Propulsion Laboratory and Kennedy Space Center. Results of the radiometric calibration validate a 5% absolute radiometric accuracy when using camera state parameters investigated during testing. When observing using camera state parameters not interrogated during calibration (e.g., non-canonical zoom positions), we conservatively estimate the absolute uncertainty to be <10%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$<10\%$\end{document}. Image quality, measured via the amplitude of the Modulation Transfer Function (MTF) at Nyquist sampling (0.35 line pairs per pixel), shows MTFNyquist=0.26−0.50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{MTF}_{\mathit{Nyquist}}=0.26-0.50$\end{document} across all zoom, focus, and filter positions, exceeding the >0.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$>0.2$\end{document} design requirement. We discuss lessons learned from calibration and suggest tactical strategies that will optimize the quality of science data acquired during operation at Mars. While most results matched expectations, some surprises were discovered, such as a strong wavelength and temperature dependence on the radiometric coefficients and a scene-dependent dynamic component to the zero-exposure bias frames. Calibration results and derived accuracies were validated using a Geoboard target consisting of well-characterized geologic samples.
引用
收藏
相关论文
共 248 条
[1]  
Barnes R.(2018)Geological analysis of Martian rover-derived Digital Outcrop Models using the 3-D visualization tool, Planetary Robotics 3-D Viewer—PRo3D Earth Space Sci. 5 285-307
[2]  
Gupta S.(1990)Observational evidence of crystalline iron oxides on Mars J. Geophys. Res. 95 14447-14461
[3]  
Traxler C.(2017)The Mars science laboratory curiosity rover Mastcam instruments: preflight and in-flight calibration, validation, and data archiving Earth Space Sci. 4 396-452
[4]  
Ortner T.(2008)The MARTE VNIR imaging spectrometer experiment: design and analysis Astrobiology 8 1001-1011
[5]  
Bauer A.(2019)Mars global simulant MGS-1: a Rocknest-based open standard for basaltic martian regolith simulants Icarus 317 470-478
[6]  
Hesina G.(2020)Mars 2020 mission overview Space Sci. Rev. 216 1-41
[7]  
Paar G.(2006)Generalized camera calibration including fish-eye lenses Int. J. Comput. Vis. 68 239-266
[8]  
Huber B.(1987)Charge-coupled-device charge-collection efficiency and the photon-transfer technique Opt. Eng. 26 972-980
[9]  
Juhart K.(2021)Spectrophotometric properties of materials observed by Pancam on the Mars exploration rovers: 4. Final mission observations Icarus 357 144-172
[10]  
Fritz L.(2015)Dust deposition on the decks of the Mars exploration rovers: 10 years of dust dynamics on the panoramic camera calibration targets Earth Space Sci. 2 9448-9456