Point Sets on the Sphere \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{S}^{2}$\end{document} with Small Spherical Cap Discrepancy

被引:0
|
作者
C. Aistleitner
J. S. Brauchart
J. Dick
机构
[1] Graz University of Technology,Institute of Mathematics A
[2] University of New South Wales,School of Mathematics and Statistics
关键词
Discrepancy; Isotropic discrepancy; Lambert map; Level curve; Level set; Numerical integration; Quasi-Monte Carlo; Spherical cap discrepancy;
D O I
10.1007/s00454-012-9451-3
中图分类号
学科分类号
摘要
In this paper we study the geometric discrepancy of explicit constructions of uniformly distributed points on the two-dimensional unit sphere. We show that the spherical cap discrepancy of random point sets, of spherical digital nets and of spherical Fibonacci lattices converges with order N−1/2. Such point sets are therefore useful for numerical integration and other computational simulations. The proof uses an area-preserving Lambert map. A detailed analysis of the level curves and sets of the pre-images of spherical caps under this map is given.
引用
收藏
页码:990 / 1024
页数:34
相关论文
共 29 条