Menshov representation spectra

被引:0
作者
Gady Kozma
Alexander Olevskiî
机构
[1] Tel Aviv University,School of Mathematics
来源
Journal d’Analyse Mathématique | 2001年 / 84卷
关键词
Representation Theorem; Trigonometric Polynomial; Trigonometric Series; Asymptotic Convergence; Inductive Definition;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:361 / 393
页数:32
相关论文
共 17 条
  • [1] Arutyunyan F. G.(1985)Representation of measurable functions of several variables by multiple trigonometric series Math. Sb. 126 267-285
  • [2] Gaposhkin V. F.(1970)The central limit theorem for some weakly dependent sequences Theory Probab. Appl. 15 649-666
  • [3] Kahane J. P.(1971)Sur le comportement radial des fonctions analytiques C. R. Acad. Sci. Paris, Series I 272 718-719
  • [4] Katznelson Y.(1976)A certain complete orthonormal system Mat. Sb. 99 356-365
  • [5] Kashin B. S.(1980)Sommes exponentielles Asterisque 79 1-209
  • [6] Katz N.(1988)On the limits of indeterminacy of trigonometric series Mat. Zametki 44 770-783
  • [7] Konyagin S. V.(1996)On the representation of functions by trigonometric series Ann. Fac. Sci. Toulouse Math. 6 77-119
  • [8] Körner T. W.(1999)Representation of non-periodic functions by trigonometric series with almost integer frequencies C. R. Acad. Sci. Paris, Serie I 329 275-280
  • [9] Kozma G.(2000)An “analytic» version of Menshov's, representation theorem C. R. Acad. Sci. Paris, Serie, I 331 219-222
  • [10] Olevskiî A.(1941)Sur la representation des fonctions mesurables par de séries trigonometriques Mat. Sb. 9 667-692