Effect of glucose on xylose utilization in Saccharomyces cerevisiae harboring the xylose reductase gene

被引:0
|
作者
Ji-Hye Han
Ju-Yong Park
Kye Sang Yoo
Hyun Woo Kang
Gi-Wook Choi
Bong-Woo Chung
Jiho Min
机构
[1] Chonbuk National University,Graduate School of Semiconductor and Chemical Engineering
[2] Seoul National University of Science and Technology,Department of Chemical Engineering
[3] Changhae Institute of Cassava and Ethanol Research,Division of Chemical Engineering
[4] Changhae Ethanol Co.,undefined
[5] Ltd,undefined
[6] Chonbuk National University,undefined
来源
Archives of Microbiology | 2011年 / 193卷
关键词
Xylose reductase; Xylose uptake; Hexose transporter;
D O I
暂无
中图分类号
学科分类号
摘要
We have constructed recombinant Saccharomyces cerevisiae JH1 harboring a xylose reductase gene (xyl1) isolated from Pichia stipitis. However, JH1 still utilizes glucose more easily than xylose. Therefore, in this study, we characterized the effect of a glucose supplement on xylose utilization, the expression level of xylose reductase as a recombinant gene in JH1, and the expression levels of two hexose transporters (Hxt4 and Hxt7) due to co-fermentation of different concentrations of glucose and xylose. Co-fermentation using 20 g/l of glucose increased xylose consumption up to 11.7 g/l, which was 7.9-fold that of xylose fermentation without a glucose supplement. In addition, we found xyl1 mRNA levels dramatically increased as cells grew under co-fermentation conditions with supplementary glucose; this result is consistent with a significant decrease in the xylose concentration 48 h after cultivation. In addition, the expression levels of Hxt4 and Hxt7 were strongly activated by the presence of glucose and xylose; in particular, Hxt7 showed a 2.9-fold increased expression relative to that of recombinant S. cerevisiae JHM with only a backbone vector, pYES2. The results of this study suggest that xylose utilization would be improved by activation of hexose transporters induced by glucose (rather than xylose) reductase expression.
引用
收藏
页码:335 / 340
页数:5
相关论文
共 50 条
  • [1] Effect of glucose on xylose utilization in Saccharomyces cerevisiae harboring the xylose reductase gene
    Han, Ji-Hye
    Park, Ju-Yong
    Yoo, Kye Sang
    Kang, Hyun Woo
    Choi, Gi-Wook
    Chung, Bong-Woo
    Min, Jiho
    ARCHIVES OF MICROBIOLOGY, 2011, 193 (05) : 335 - 340
  • [2] Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization
    Stefan Krahulec
    Barbara Petschacher
    Michael Wallner
    Karin Longus
    Mario Klimacek
    Bernd Nidetzky
    Microbial Cell Factories, 9
  • [3] Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization
    Krahulec, Stefan
    Petschacher, Barbara
    Wallner, Michael
    Longus, Karin
    Klimacek, Mario
    Nidetzky, Bernd
    MICROBIAL CELL FACTORIES, 2010, 9
  • [4] The effect of xylose reductase genes on xylitol production by industrial Saccharomyces cerevisiae in fermentation of glucose and xylose
    Yang, Bai-Xue
    Xie, Cai-Yun
    Xia, Zi-Yuan
    Wu, Ya-Jing
    Li, Bo
    Tang, Yue-Qin
    PROCESS BIOCHEMISTRY, 2020, 95 : 122 - 130
  • [5] Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase
    Walfridsson, M
    Bao, XM
    Anderlund, M
    Lilius, G
    Bulow, L
    HahnHagerdal, B
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1996, 62 (12) : 4648 - 4651
  • [6] Engineering Saccharomyces cerevisiae for xylose utilization
    Pronk, J
    Kuyper, M
    Toirkens, M
    Winkler, R
    van Dijken, H
    de Laat, W
    JOURNAL OF BIOTECHNOLOGY, 2005, 118 : S86 - S87
  • [7] Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae
    Jeppsson, M
    Träff, K
    Johansson, B
    Hahn-Hägerdal, B
    Gorwa-Grauslund, MF
    FEMS YEAST RESEARCH, 2003, 3 (02) : 167 - 175
  • [8] Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae
    Apel, Amanda Reider
    Ouellet, Mario
    Szmidt-Middleton, Heather
    Keasling, Jay D.
    Mukhopadhyay, Aindrila
    SCIENTIFIC REPORTS, 2016, 6
  • [9] Engineering of Saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose
    Hou, Jin
    Qiu, Chenxi
    Shen, Yu
    Li, Hongxing
    Bao, Xiaoming
    FEMS YEAST RESEARCH, 2017, 17 (04)
  • [10] Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae
    Amanda Reider Apel
    Mario Ouellet
    Heather Szmidt-Middleton
    Jay D. Keasling
    Aindrila Mukhopadhyay
    Scientific Reports, 6