Resonant-Superlinear and Resonant-Sublinear Dirichlet Problems

被引:0
作者
Zhenhai Liu
Nikolaos S. Papageorgiou
机构
[1] Yulin Normal University,Center for Applied Mathematics of Guangxi
[2] Guangxi Minzu University,Guangxi Key Laboratory of Universities Optimization Control and Engineering Calculation
[3] National Technical University,Department of Mathematics
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2024年 / 47卷
关键词
Asymmetric reaction; Regularity theory; Maximum principle; Resonance; Critical groups; 35J20; 35J60; 58E05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study elliptic equations in which the reaction (right hand side) exhibits an asymmetric behavior as x→±∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\rightarrow \pm \infty $$\end{document}. More precisely, we assume that we have resonance as x→-∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\rightarrow -\infty $$\end{document}, while as x→+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\rightarrow +\infty $$\end{document} the equation is superlinear. Using variational tools combined with the theory of critical groups, we prove several multiplicity theorems for nonlinear, nonhomogeneous equations and for semilinear equations (driven by the Laplacian).
引用
收藏
相关论文
共 27 条
  • [1] Ambrosetti A(1973)Dual variational methods in critical point theory and applications J. Funct. Anal. 14 349-381
  • [2] Rabinowitz P(2013)A resonant-superlinear elliptic problem revisited Adv. Nonlin. Stud. 13 97-114
  • [3] Cuesta M(2001)Some remarks on the Fuŭk spectrum of the p-Laplacian and critical groups J. Math. Anal. Appl. 254 164-177
  • [4] De Coster C(2015)Resonant-superlinear elliptic problems using variational methods Adv. Nonlin. Stud. 15 157-169
  • [5] Dancer N(2012)Multiple solutions for nonlinear coercive problems with a nonhomogeneous differential operator and a non smooth potential Set Valued Var. Anal. 20 417-443
  • [6] Perera K(2017)Asymmetric ( Var. 56 23-158
  • [7] Domingos da Silva E(2009))-equation with double resonance, Calc J. Math. Anal. Appl. 354 147-361
  • [8] Ribeiro B(1991)Multiple solutions for semilinear elliptic boundary value problems with double resonance Comm. Partial Diff. Equ. 16 311-192
  • [9] Gasiński L(2011)A natural generaliztion of the natural conditions of Ladyzhenskaya and Uraltseva for elliptic equations Proc. R. Soc. Edinburgh. Math. 141A 171-430
  • [10] Papageorgiou NS(2014)On p-Laplacian equations with concave terms and asymmetric perturbations Appl. Math. Optim. 69 393-4502