The inhibition of Microcystis aeruginos by electrochemical oxidation using boron-doped diamond electrode

被引:0
|
作者
Xun Wang
Ping Xiang
Yaqing Zhang
Yihui Wan
Huilan Lian
机构
[1] Chongqing University,Key Laboratory of Three Gorges Reservoir Region’s Eco
[2] Chongqing University,Environment, Ministry of Education
来源
Environmental Science and Pollution Research | 2018年 / 25卷
关键词
Electrochemical oxidation; Boron-doped diamond electrode; The growth inhibition; Photosynthesis; Microcystin-LR;
D O I
暂无
中图分类号
学科分类号
摘要
Electrooxidation is used to study the inhibition behavior of Microcystis aeruginosa, a dominant algae species during water blooms mainly caused by non-point source pollution. The inhibitory effect of current density, A/V ratio, initial algae concentration, and algae growth phase on the growth of algae by electrochemical oxidation was investigated, respectively. Further, the effect of electrolysis on the photosynthesis of algae cells and the degradation of Microcystin-LR (MC-LR) in solution were also studied. The results showed that the inhibitory effect increased with the increase of current density and A/V ratio. The damage of cell structure and the leakage of intracellular substances were observed when the current density was 17 mA/cm2. The intracellular chlorophyll a decreased significantly during the culture period. Only when the A/V ratio was 9.75 m−1, the algal growth could be completely inhibited. The inhibitory effect of algae was decreased with the increase of initial algal concentration, and the inhibitory effect of algae in the log growth phase was better than that in the stationary phase. The degradation efficiency of total MC-LR was 91.7% at 90 min. Some other substances could be degraded simultaneously along with the degradation of MC-LR in electrochemical oxidation.
引用
收藏
页码:20631 / 20639
页数:8
相关论文
共 50 条
  • [1] The inhibition of Microcystis aeruginos by electrochemical oxidation using boron-doped diamond electrode
    Wang, Xun
    Xiang, Ping
    Zhang, Yaqing
    Wan, Yihui
    Lian, Huilan
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2018, 25 (21) : 20631 - 20639
  • [2] Electrochemical oxidation of phenol at boron-doped diamond electrode
    Iniesta, J
    Michaud, PA
    Panizza, M
    Cerisola, G
    Aldaz, A
    Comninellis, C
    ELECTROCHIMICA ACTA, 2001, 46 (23) : 3573 - 3578
  • [3] Electrochemical oxidation of phenol on boron-doped diamond electrode
    G. V. Kornienko
    N. V. Chaenko
    N. G. Maksimov
    V. L. Kornienko
    V. P. Varnin
    Russian Journal of Electrochemistry, 2011, 47
  • [4] Electrochemical oxidation of phenol on boron-doped diamond electrode
    Kornienko, G. V.
    Chaenko, N. V.
    Maksimov, N. G.
    Kornienko, V. L.
    Varnin, V. P.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2011, 47 (02) : 225 - 229
  • [5] Electrochemical Oxidation of Organic Compounds Using Boron-Doped Diamond Electrode
    Chang, Ming
    Gao, Chengyao
    Jiang, Juyuan
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (02) : E50 - E54
  • [6] Enhanced electrochemical oxidation of phenol by boron-doped diamond nanowire electrode
    Lee, Choong-Hyun
    Lee, Eung-Seok
    Lim, Young-Kyun
    Park, Kang-Hee
    Park, Hee-Deung
    Lim, Dae-Soon
    RSC ADVANCES, 2017, 7 (11): : 6229 - 6235
  • [7] Electrochemical oxidation of thiocyanates on boron-doped diamond electrode in alkaline solutions
    Kenova, T. A.
    Vasil'eva, I. S.
    Kornienko, V. L.
    Varnin, V. P.
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2013, 86 (11) : 1723 - 1728
  • [8] Electrochemical oxidation of thiocyanates on boron-doped diamond electrode in alkaline solutions
    T. A. Kenova
    I. S. Vasil’eva
    V. L. Kornienko
    V. P. Varnin
    Russian Journal of Applied Chemistry, 2013, 86 : 1723 - 1728
  • [9] Electrochemical oxidation of aromatic sulphonated acids on a boron-doped diamond electrode
    Dipartimento di Ingegneria Chimica e di Processo, Università di Genova, P.le J.F. Kennedy 1, Genova 16129, Italy
    Int. J. Environ. Pollut., 2006, 1-3 (64-74):
  • [10] Electrochemical oxidation of thiocyanates on a boron-doped diamond electrode in acid media
    Kenova, T. A.
    Vasilieva, I. S.
    Kornienko, V. L.
    Varnin, V. P.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2013, 49 (11) : 1086 - 1091