Deviation from bimaximal mixing and leptonic CP phases in S4 family symmetry and generalized CP

被引:0
作者
Cai-Chang Li
Gui-Jun Ding
机构
[1] University of Science and Technology of China,Department of Modern Physics
来源
Journal of High Energy Physics | / 2015卷
关键词
Neutrino Physics; CP violation; Discrete and Finite Symmetries;
D O I
暂无
中图分类号
学科分类号
摘要
The lepton flavor mixing matrix having one row or one column in common with the bimaximal mixing up to permutations is still compatible with the present neutrino oscillation data. We provide a thorough exploration of generating such a mixing matrix from S4 family symmetry and generalized CP symmetry HCP. Supposing that S4 ⋊ HCP is broken down to Z2ST2SU×HCPν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {Z}_2^{S{T}^2SU}\times {H}_{\mathrm{CP}}^{\nu } $$\end{document} in the neutrino sector and Z4TST2U⋊HCPl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {Z}_4^{TS{T}^2U}\rtimes {H}_{\mathrm{CP}}^l $$\end{document} in the charged lepton sector, one column of the PMNS matrix would be of the form 1/2,1/2,1/2T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left(1/2,1/\sqrt{2},1/2\right)}^T $$\end{document} up to permutations, both Dirac CP phase and Majorana CP phases are trivial to accommodate the observed lepton mixing angles. The phenomenological implications of the remnant symmetry K4TST2,T2U×HCPν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {K}_4^{\left(TS{T}^2,{T}^2U\right)}\times {H}_{\mathrm{CP}}^{\nu } $$\end{document} in the neutrino sector and Z2SU × HCPl in the charged lepton sector are studied. One row of PMNS matrix is determined to be 1/2,1/2,−i/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left(1/2,1/2,-i/\sqrt{2}\right) $$\end{document}, and all the three leptonic CP phases can only be trivial to fit the measured values of the mixing angles. Two models based on S4 family symmetry and generalized CP are constructed to implement these model independent predictions enforced by remnant symmetry. The correct mass hierarchy among the charged leptons is achieved. The vacuum alignment and higher order corrections are discussed.
引用
收藏
相关论文
共 159 条
  • [41] Scott WG(2012)) family symmetry in semi-direct models of leptons Phys. Rev. D 86 113003-undefined
  • [42] Harrison PF(2009)Geometrical T violation JHEP 05 020-undefined
  • [43] Scott WG(2011)Geometrical CP-violation JHEP 10 010-undefined
  • [44] Harrison PF(2013)Geometrical CP-violation from non-renormalisable scalar potentials Nucl. Phys. B 876 418-undefined
  • [45] Scott WG(2015)Geometrical CP-violation in multi-Higgs models Phys. Rev. D 91 033003-undefined
  • [46] Grimus W(2015)A common origin of fermion mixing and geometrical CP-violation and its test through Higgs physics at the LHC JHEP 04 069-undefined
  • [47] Lavoura L(1998)Geometrical CP-violation in the N-Higgs-doublet model Phys. Lett. B 437 107-undefined
  • [48] Grimus W(2009)Towards realistic models of quark masses with geometrical CP-violation Eur. Phys. J. C 62 599-undefined
  • [49] Lavoura L(2010)Dihedral families of quarks, leptons and Higgses Eur. Phys. J. C 70 1099-undefined
  • [50] Ferreira PM(2011)Variations on the supersymmetric Q Phys. Rev. D 84 053004-undefined