Fully Nonlinear Elliptic Equations on Hermitian Manifolds for Symmetric Functions of Partial Laplacians

被引:0
作者
Mathew George
Bo Guan
Chunhui Qiu
机构
[1] Ohio State University,Department of Mathematics
[2] Xiamen University,School of Mathematical Sciences
来源
The Journal of Geometric Analysis | 2022年 / 32卷
关键词
Fully nonlinear elliptic equations; Hermitian manifolds; Partial Laplacians; Tangent cone at infinity; Rank; A priori estimates; Dirichlet problem; 35J15; 35J60; 58J05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a class of fully nonlinear second-order elliptic equations on Hermitian manifolds closely related to the general notion of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {G}$$\end{document}-plurisubharmonicity of Harvey–Lawson and an equation treated by Székelyhidi–Tosatti–Weinkove in the proof of Gauduchon conjecture. Under fairly general assumptions, we derive interior estimates and establish the existence of smooth solutions for the Dirichlet problem as well as for equations on closed manifolds.
引用
收藏
相关论文
共 46 条
[1]  
Gauduchon P(1984)La 1-forme de torsion dúne variété hermitienne compacte Math. Ann. 267 495-518
[2]  
Székelyhidi G(2017)Gauduchon metrics with prescribed volume form Acta Math. 219 181-211
[3]  
Tosatti V(2010)Form-type Calabi–Yau equations Math. Res. Lett. 17 887-903
[4]  
Weinkove B(2015)Form-type equations on Kähler manifolds of nonnegative orthogonal bisectional curvature Calc. Var. PDE 52 327-344
[5]  
Fu J-X(2012)Geometric plurisubharmonicity and convexity: an introduction Adv. Math. 230 2428-2456
[6]  
Wang Z-Z(2013)p-Convexity, p-plurisubharmonicity and the Levi problem Indiana Univ. Math. J. 62 149-169
[7]  
Wu D-M(1985)The Dirichlet problem for nonlinear second-order elliptic equations III: functions of eigenvalues of the Hessians Acta Math. 155 261-301
[8]  
Fu J-X(2007)A Monge–Ampère-type equation motivated by string theory Commun. Anal. Geom. 15 29-75
[9]  
Wang Z-Z(2008)The theory of superstring with flux on non-Kähler manifolds and the complex Monge–Ampère equation J. Differ. Geom. 78 369-428
[10]  
Wu D-M(2016)On estimates for the Fu-Yau generalization of a Strominger system J. Reine Angew. Math. 1 1-32