Parallel medical image reconstruction: from graphics processing units (GPU) to Grids

被引:0
|
作者
Maraike Schellmann
Sergei Gorlatch
Dominik Meiländer
Thomas Kösters
Klaus Schäfers
Frank Wübbeling
Martin Burger
机构
[1] Universität Münster,Institut für Informatik
来源
关键词
Medical image reconstruction; Parallel programming; Parallel architecture comparison; Positron Emission Tomography (PET); List-mode OSEM algorithm; Cell processor; Graphics processing units (GPU); CUDA;
D O I
暂无
中图分类号
学科分类号
摘要
We present and compare a variety of parallelization approaches for a real-world case study on modern parallel and distributed computer architectures. Our case study is a production-quality, time-intensive algorithm for medical image reconstruction used in computer tomography (PET). We parallelize this algorithm for the main kinds of contemporary parallel architectures: shared-memory multiprocessors, distributed-memory clusters, graphics processing units (GPU) using the CUDA framework, the Cell processor and, finally, how various architectures can be accessed in a distributed Grid environment. The main contribution of the paper, besides the parallelization approaches, is their systematic comparison regarding four important criteria: performance, programming comfort, accessibility, and cost-effectiveness. We report results of experiments on particular parallel machines of different architectures that confirm the findings of our systematic comparison.
引用
收藏
页码:151 / 160
页数:9
相关论文
共 50 条
  • [31] Parallel UPGMA Algorithm on Graphics Processing Units Using CUDA
    Chen, Yu-Rong
    Hung, Che Lun
    Lin, Yu-Shiang
    Lin, Chun-Yuan
    Lee, Tien-Lin
    Lee, Kual-Zheng
    2012 IEEE 14TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS & 2012 IEEE 9TH INTERNATIONAL CONFERENCE ON EMBEDDED SOFTWARE AND SYSTEMS (HPCC-ICESS), 2012, : 849 - 854
  • [32] Graphics Processing Units and Open Computing Language for parallel computing
    Perelygin, Kyrylo
    Lam, Shui
    Wu, Xiaolong
    COMPUTERS & ELECTRICAL ENGINEERING, 2014, 40 (01) : 241 - 251
  • [33] Parallel Computation of Bivariate Polynomial Resultants on Graphics Processing Units
    Stussak, Christian
    Schenzel, Peter
    APPLIED PARALLEL AND SCIENTIFIC COMPUTING, PT II, 2012, 7134 : 78 - 87
  • [34] Massively parallel chemical potential calculation on graphics processing units
    Daly, Kevin B.
    Benziger, Jay B.
    Debenedetti, Pablo G.
    Panagiotopoulos, Athanassios Z.
    COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (10) : 2054 - 2062
  • [35] PARALLEL EFFICIENT METHOD OF MOMENTS EXPLOITING GRAPHICS PROCESSING UNITS
    De Donno, D.
    Esposito, A.
    Monti, G.
    Tarricone, L.
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2010, 52 (11) : 2568 - 2572
  • [36] Parallel execution of Java']Java loops on Graphics Processing Units
    Leung, Alan
    Lhotak, Ondrej
    Lashari, Ghulam
    SCIENCE OF COMPUTER PROGRAMMING, 2013, 78 (05) : 458 - 480
  • [37] Parallel Implementation of the Discrete Wavelet Transform on Graphics Processing Units
    Khemiri, Randa
    Sayadi, Fatma
    Saidani, Taoufik
    Chouchene, Marwa
    Bahri, Haythem
    Tourki, Rached
    2014 1ST INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP 2014), 2014, : 111 - 114
  • [38] Parallel Mining of Neuronal Spike Streams on Graphics Processing Units
    Yong Cao
    Debprakash Patnaik
    Sean Ponce
    Jeremy Archuleta
    Patrick Butler
    Wu-chun Feng
    Naren Ramakrishnan
    International Journal of Parallel Programming, 2012, 40 : 605 - 632
  • [39] Efficient CT Image Reconstruction in a GPU Parallel Environment
    Valencia Perez, Tomas A.
    Hernandez Lopez, Javier M.
    Moreno-Barbosa, Eduardo
    de Celis Alonso, Benito
    Palomino Merino, Martin R.
    Castano Meneses, Victor M.
    TOMOGRAPHY, 2020, 6 (01) : 44 - 53
  • [40] An Efficient GPU Based Parallel Algorithm for Image reconstruction
    Bajpai, Manish Kumar
    Munshi, Prabhat
    Gupta, Phalguni
    2012 2ND IEEE INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND GRID COMPUTING (PDGC), 2012, : 242 - 245