Parallel medical image reconstruction: from graphics processing units (GPU) to Grids

被引:0
|
作者
Maraike Schellmann
Sergei Gorlatch
Dominik Meiländer
Thomas Kösters
Klaus Schäfers
Frank Wübbeling
Martin Burger
机构
[1] Universität Münster,Institut für Informatik
来源
关键词
Medical image reconstruction; Parallel programming; Parallel architecture comparison; Positron Emission Tomography (PET); List-mode OSEM algorithm; Cell processor; Graphics processing units (GPU); CUDA;
D O I
暂无
中图分类号
学科分类号
摘要
We present and compare a variety of parallelization approaches for a real-world case study on modern parallel and distributed computer architectures. Our case study is a production-quality, time-intensive algorithm for medical image reconstruction used in computer tomography (PET). We parallelize this algorithm for the main kinds of contemporary parallel architectures: shared-memory multiprocessors, distributed-memory clusters, graphics processing units (GPU) using the CUDA framework, the Cell processor and, finally, how various architectures can be accessed in a distributed Grid environment. The main contribution of the paper, besides the parallelization approaches, is their systematic comparison regarding four important criteria: performance, programming comfort, accessibility, and cost-effectiveness. We report results of experiments on particular parallel machines of different architectures that confirm the findings of our systematic comparison.
引用
收藏
页码:151 / 160
页数:9
相关论文
共 50 条
  • [1] Parallel medical image reconstruction: from graphics processing units (GPU) to Grids
    Schellmann, Maraike
    Gorlatch, Sergei
    Meilaender, Dominik
    Koesters, Thomas
    Schaefers, Klaus
    Wuebbeling, Frank
    Burger, Martin
    JOURNAL OF SUPERCOMPUTING, 2011, 57 (02): : 151 - 160
  • [2] Parallel Medical Image Reconstruction: From Graphics Processors to Grids
    Schellmann, Maraike
    Gorlatch, Sergei
    Meilaender, Dominik
    Koesters, Thomas
    Schaefers, Klaus
    Wuebbeling, Frank
    Burger, Martin
    PARALLEL COMPUTING TECHNOLOGIES, PROCEEDINGS, 2009, 5698 : 457 - 473
  • [3] Accelerating Parallel Magnetic Resonance Image Reconstruction on Graphics Processing Units Using CUDA
    Inam, Omair
    Qureshi, Mahmood
    Akram, Hamza
    Omer, Hammad
    Laraib, Zoia
    2019 IEEE 2ND INTERNATIONAL CONFERENCE ON INFORMATION AND COMPUTER TECHNOLOGIES (ICICT), 2019, : 109 - 113
  • [4] A Review on Parallel Medical Image Processing on GPU
    Khor, Hui Liang
    Liew, Siau-Chuin
    Zain, Jasni Mohd.
    2015 4TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND COMPUTER SYSTEMS (ICSECS), 2015, : 45 - 48
  • [5] Medical image segmentation with deformable models on graphics processing units
    Alvarado, Rigo
    Tapia, Juan J.
    Rolon, Julio C.
    JOURNAL OF SUPERCOMPUTING, 2014, 68 (01): : 339 - 364
  • [6] Medical image segmentation with deformable models on graphics processing units
    Rigo Alvarado
    Juan J. Tapia
    Julio C. Rolón
    The Journal of Supercomputing, 2014, 68 : 339 - 364
  • [7] FFT Based Medical Image Registration Using a Graphics Processing Unit (GPU)
    Luce, J.
    Hoggarth, M.
    Lin, J.
    Block, A.
    Roeske, J.
    MEDICAL PHYSICS, 2012, 39 (06) : 3673 - 3673
  • [8] Tensor voting accelerated by graphics processing units (GPU)
    Min, Changki
    Medioni, Gerard
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS, 2006, : 1103 - +
  • [9] Image processing on parallel GPU pixel units - art. no. 606515
    Bjorke, Kevin
    Computational Imaging IV, 2006, 6065 : 6515 - 6515
  • [10] An Optimized Parallel IDCT on Graphics Processing Units
    Wang, Biao
    Alvarez-Mesa, Mauricio
    Chi, Chi Ching
    Juurlink, Ben
    EURO-PAR 2012: PARALLEL PROCESSING WORKSHOPS, 2013, 7640 : 155 - 164