Infinitesimal deformation of p-adic differential equations on Berkovich curves

被引:0
|
作者
Andrea Pulita
机构
[1] Université Grenoble Alpes,Institut Fourier
来源
Mathematische Annalen | 2017年 / 368卷
关键词
Primary 12h25; Secondary 12h05; 12h10; 12h20; 12h99; 11S15; 11S20; 11S40; 11S80; 11M99; 34M55; 58h15;
D O I
暂无
中图分类号
学科分类号
摘要
We show that if a differential equation F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {F}$$\end{document} over a quasi-smooth Berkovich curve X has a certain compatibility condition with respect to an automorphism σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} of X, then F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {F}$$\end{document} acquires a semi-linear action of σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} (i.e. lifting that on X). The compatibility condition forces the automorphism σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} to be close to the identity of X, so the above construction applies to a certain class of automorphisms called infinitesimal. This generalizes André and Di Vizio (Astérisqué 1(296):55–111, 2004) and Pulita (Compos. Math. 144(4):867–919, 2008). We also obtain an application to Morita’s p-adic Gamma function, and to related values of p-adic L-functions.
引用
收藏
页码:111 / 164
页数:53
相关论文
共 50 条