Multiplicity of semiclassical solutions for fractional Choquard equations with critical growth

被引:0
|
作者
Quanqing Li
Jian Zhang
Wen Zhang
机构
[1] Honghe University,Department of Mathematics
[2] Hunan University of Technology and Business,College of Science
[3] Hunan University of Technology and Business,Key Laboratory of Hunan Province for Statistical Learning and Intelligent Computation
[4] University of Craiova,Department of Mathematics
来源
关键词
Fractional Choquard equation; Semiclassical solution; Critical exponent growth; 35J20; 35A15; 35B33; 58E05;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we focus on the following fractional Choquard equation involving upper critical exponent ε2s(-Δ)su+V(x)u=εμ-N[|x|-μ∗|u|2μ,s∗]|u|2μ,s∗-2u+λf(u),x∈RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varepsilon ^{2s}(-\Delta )^su+V(x)u=\varepsilon ^{\mu -N}[|x|^{-\mu }*|u|^{2_{\mu ,s}^*}]|u|^{2_{\mu ,s}^*-2}u+\lambda f(u), \ x \in \mathbb {R}^N,\quad \end{aligned}$$\end{document}where ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} is a positive parameter, λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document}, 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1$$\end{document}, (-Δ)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^s$$\end{document} denotes the fractional Laplacian of order s, N>2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N>2s$$\end{document}, 0<μ<N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\mu <N$$\end{document} and 2μ,s∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2_{\mu ,s}^*$$\end{document} is fractional critical exponent in the sense of the Hardy–Littlewood–Sobolev inequality. Under suitable assumptions on the potential V and nonlinearity f, using variational tools from Nehari manifold method and Ljusternik–Schnirelmann category theory, we establish the existence and multiplicity of semiclassical positive solutions.
引用
收藏
相关论文
共 50 条
  • [1] Multiplicity of semiclassical solutions for fractional Choquard equations with critical growth
    Li, Quanqing
    Zhang, Jian
    Zhang, Wen
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (02)
  • [2] SEMICLASSICAL STATES FOR FRACTIONAL CHOQUARD EQUATIONS WITH CRITICAL GROWTH
    Zhang, Hui
    Wang, Jun
    Zhang, Fubao
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (01) : 519 - 538
  • [3] Semiclassical States of Fractional Choquard Equations with Exponential Critical Growth
    Yuan, Shuai
    Tang, Xianhua
    Zhang, Jian
    Zhang, Limin
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (12)
  • [4] Multiplicity and concentration of solutions for Choquard equations with critical growth
    Zhang, Hui
    Zhang, Fubao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 481 (01)
  • [5] Semiclassical States of Fractional Choquard Equations with Exponential Critical Growth
    Shuai Yuan
    Xianhua Tang
    Jian Zhang
    Limin Zhang
    The Journal of Geometric Analysis, 2022, 32
  • [6] LOCALIZED NODAL SOLUTIONS FOR SEMICLASSICAL CHOQUARD EQUATIONS WITH CRITICAL GROWTH
    Zhang, Bo
    Zhang, Wei
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 2024 (19)
  • [7] Existence and multiplicity of solutions for fractional Choquard equations
    Ma, Pei
    Zhang, Jihui
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 164 : 100 - 117
  • [8] Multiplicity and concentration behaviour of solutions for a fractional Choquard equation with critical growth
    Yang, Zhipeng
    Zhao, Fukun
    ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) : 732 - 774
  • [9] Semiclassical states for fractional Choquard equations with critical frequency
    Li, Xinfu
    Zhu, Meiling
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (08) : 1376 - 1401
  • [10] Multiplicity of solutions for a class of fractional Choquard–Kirchhoff equations involving critical nonlinearity
    Fuliang Wang
    Mingqi Xiang
    Analysis and Mathematical Physics, 2019, 9 : 1 - 16