Geometric rigidity theorem for submanifolds with positive curvature

被引:0
作者
Xu H. [1 ]
Han W. [1 ]
机构
[1] Center of Mathematical Sciences, Zhejiang University, Hangzhou
基金
中国国家自然科学基金;
关键词
Geometric rigidity; Mean curvature; Sectional curvature; Submanifolds;
D O I
10.1007/s11766-005-0027-3
中图分类号
学科分类号
摘要
A geometric rigidity theorem for submanifolds with parallel mean curvature and positive curvature in a space form is proved. It is a generalization of the famous rigidity theorems due to S. T. Yau and others. © 2005, Springer Verlag. All rights reserved.
引用
收藏
页码:475 / 482
页数:7
相关论文
共 10 条
[1]  
Chern S.S., do Carmo M., Kobayashi S., Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields, (1970)
[2]  
Erbacher J., Reduction of the codimension of an isometric immersion, J Diff Geom, 5, pp. 333-340, (1971)
[3]  
Itoh T., On Veronese manifolds, J Math Soc Japan, 27, pp. 497-506, (1975)
[4]  
Itoh T., Addendum to my paper "On Veronese manifolds, J Math Soc Japan, 30, pp. 73-74, (1978)
[5]  
Li A.M., Li J.M., An intrinsic rigidity theorem for minimal submanifolds in a sphere, Archiv der Math, 58, pp. 582-594, (1992)
[6]  
Shen Y.B., Submanifolds with nonnegative sectional curvature, Chinese Ann Math Ser B, 5, pp. 625-632, (1984)
[7]  
Shiohama K., Xu H.W., A general rigidity theorem for complete submanifolds, Nagoya Math J, 150, pp. 105-134, (1998)
[8]  
Simons J., Minimal varieties in Riemannian manifolds, Ann Math, 88, pp. 62-105, (1968)
[9]  
Xu H.W., A rigidity theorem for submanifolds with parallel mean curvature in a sphere, Arch Math, 61, pp. 489-496, (1993)
[10]  
Yan S.T., Submanifolds with constant mean curvature, I, I, Amer J Math, 1974, 96, (1975)