An existence-uniqueness theorem and alternating contraction projection methods for inverse variational inequalities

被引:0
作者
Songnian He
Qiao-Li Dong
机构
[1] Civil Aviation University of China,College of Science
来源
Journal of Inequalities and Applications | / 2018卷
关键词
Inverse variational inequality; Variational inequality; Lipschitz continuous; Strongly monotone; 47J20; 90C25; 90C30; 90C52;
D O I
暂无
中图分类号
学科分类号
摘要
Let C be a nonempty closed convex subset of a real Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{H}$\end{document} with inner product 〈⋅,⋅〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle \cdot , \cdot \rangle $\end{document}, and let f:H→H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f: \mathcal{H}\rightarrow \mathcal{H}$\end{document} be a nonlinear operator. Consider the inverse variational inequality (in short, IVI(C,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname{IVI}(C,f)$\end{document}) problem of finding a point ξ∗∈H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\xi ^{*}\in \mathcal{H}$\end{document} such that f(ξ∗)∈C,〈ξ∗,v−f(ξ∗)〉≥0,∀v∈C.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f\bigl(\xi ^{*}\bigr)\in C, \quad \bigl\langle \xi ^{*}, v-f \bigl(\xi ^{*}\bigr)\bigr\rangle \geq 0, \quad \forall v\in C. $$\end{document} In this paper, we prove that IVI(C,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname{IVI}(C,f)$\end{document} has a unique solution if f is Lipschitz continuous and strongly monotone, which essentially improves the relevant result in (Luo and Yang in Optim. Lett. 8:1261–1272, 2014). Based on this result, an iterative algorithm, named the alternating contraction projection method (ACPM), is proposed for solving Lipschitz continuous and strongly monotone inverse variational inequalities. The strong convergence of the ACPM is proved and the convergence rate estimate is obtained. Furthermore, for the case that the structure of C is very complex and the projection operator PC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P_{C}$\end{document} is difficult to calculate, we introduce the alternating contraction relaxation projection method (ACRPM) and prove its strong convergence. Some numerical experiments are provided to show the practicability and effectiveness of our algorithms. Our results in this paper extend and improve the related existing results.
引用
收藏
相关论文
共 81 条
[21]  
Yang J.(2008)Inverse variational inequalities with projection-based solution methods J. Convex Anal. 15 1703-1724
[22]  
Fichera G.(2013)Well-posedness of inverse variational inequalities Optim. Lett. 7 493-512
[23]  
Fichera G.(2015)Levitin–Polyak well-posedness by perturbations of inverse variational inequalities Optimization 64 114-125
[24]  
Fukushima M.(1967)Regularization of quasi-variational inequalities Commun. Pure Appl. Math. 20 1261-1272
[25]  
Han Q.M.(1995)Variational inequalities J. Math. Anal. Appl. 194 168-184
[26]  
He B.S.(2014)Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive mapping in Banach spaces Optim. Lett. 8 925-935
[27]  
Harker P.T.(1995)Regularization and iterative methods for monotone inverse variational inequalities SIAM J. Control Optim. 33 375-387
[28]  
Pang J.S.(2017)On a generalization of a normal map and equation J. Nonlinear Convex Anal. 18 4413-4416
[29]  
He B.S.(2012)Projection splitting algorithms for nonself operators Optim. Eng. 13 185-201
[30]  
He B.S.(1964)An inverse variational inequality approach to the evolutionary spatial price equilibrium problem C. R. Acad. Sci. 258 303-314