Exploring the sensitivity of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-decay half-life to neutron skin thickness for nuclei around 208Pb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{208}\text {Pb}$$\end{document}

被引:0
作者
Niu Wan
Chang Xu
Zhong-Zhou Ren
机构
[1] Nanjing University,Department of Physics and Key Laboratory of Modern Acoustics, Institute of Acoustics
[2] National Laboratory of Heavy-Ion Accelerator,Center of Theoretical Nuclear Physics
关键词
Density distribution; Neutron skin thickness; Density-dependent cluster model; -decay half-life;
D O I
10.1007/s41365-016-0174-7
中图分类号
学科分类号
摘要
Based on the newest experimentally extracted nuclear density distributions for double-magic nucleus 208Pb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{208}\text {Pb}$$\end{document} (Tarbert et al. in Phys Rev Lett 112:242502, 2014), the sensitivity of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-decay half-life to nuclear skin thickness is explored in the vicinity of the shell closure region around 208Pb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{208}\text {Pb}$$\end{document}, i.e., isotopes of Z=82\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z=82$$\end{document} and isotones of N=126\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=126$$\end{document}. With the two-parameter Fermi (2PF) density distributions and an analytically derived formula, the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-decay half-life is found to be closely related to the magnitude of nuclear skin thickness. For α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} decays to the Z=82\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z=82$$\end{document} isotopes, the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-decay half-life is found to decrease with the increasing neutron skin thickness, while the opposite behavior is found for α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} decays to the N=126\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=126$$\end{document} isotones. Therefore, it could be a possible way to extract the nuclear skin thickness from measured α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-decay half-lives.
引用
收藏
相关论文
共 94 条
[1]  
Röpke G(2014)Nuclear clusters bound to doubly magic nuclei: the case of Phys. Rev. C 90 034304-undefined
[2]  
Schuck P(2008)Po Phys. Rev. C 77 054318-undefined
[3]  
Funaki Y(1987) particle preformation in heavy nuclei and penetration probability Phys. Rev. Lett. 59 262-undefined
[4]  
Zhang HF(1928)Decay width and the shift of a quasistationary state Z. Phys. 51 204-undefined
[5]  
Royer G(1929)Zur Quantentheorie des Atomkernes Phys. Rev. 33 127-undefined
[6]  
Gurvitz SA(2008)Quantum mechanics and radioactive disintegration Phys. Rev. C 78 044310-undefined
[7]  
Kalbermann G(2012)Unified formula of half-lives for Phys. Rev. C 85 044608-undefined
[8]  
Gamow G(2004) decay and cluster radioactivity Phys. Rev. C 70 034304-undefined
[9]  
Gurney RW(2005)New Geiger–Nuttall law for Nucl. Phys. A 753 174-undefined
[10]  
Condon EU(2010) decay of heavy nuclei Phys. Rev. C 82 044611-undefined