On fractional Simpson type integral inequalities for co-ordinated convex functions

被引:0
作者
Sundas Khan
Hüseyin Budak
机构
[1] Government College Women University,Department of Mathematics
[2] Düzce University,Department of Mathematics, Faculty of Science and Arts
来源
Journal of Inequalities and Applications | / 2022卷
关键词
Simpson’s inequality; Integral inequalities; Fractional calculus; Co-ordinated convex functions; 26D07; 26D10; 26D15; 26B15; 26B25;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, we prove equality for twice partially differentiable mappings involving the double generalized fractional integral. Using the established identity, we offer some Simpson’s type inequalities for partially differentiable co-ordinated convex functions in a rectangle from the plane R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R} ^{2}$\end{document}.
引用
收藏
相关论文
共 74 条
[1]  
Alomari M.(2009)New inequalities of Simpson’s type for RGMIA Res. Rep. Collect. 12 93-108
[2]  
Darus M.(2022)-convex functions with applications Comput. Methods Differ. Equ. 10 73-88
[3]  
Dragomir S.S.(2021)New midpoint type inequalities for generalized fractional integral Sahand Commun. Math. Anal. 18 175-180
[4]  
Budak H.(1999)On new extensions of Hermite–Hadamard inequalities for generalized fractional integrals Soochow J. Math. 25 533-579
[5]  
Kara H.(2000)On Simpson’s quadrature formula for Lipschitzian mappings and applications J. Inequal. Appl. 5 358-369
[6]  
Kapucu R.(2017)On Simpson’s inequality and applications Appl. Math. Comput. 293 3115-3124
[7]  
Budak H.(2021)A generalization of Simpson’s inequality via differentiable mapping using extended (s,m)-convex functions Fractals 29 463-478
[8]  
Pehlivan E.(2020)On the Bullen-type inequalities via generalized fractional integrals and their applications Chaos Solitons Fractals 156 90-101
[9]  
Kösem P.(2019)On the fractional double integral inclusion relations having exponentila kernels via interval-valued co-ordinated convex mappings Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113 2155-2158
[10]  
Dragomir S.S.(2016)Simpson type integral inequalities for generalized fractional integral Nonlinear Funct. Anal. Appl. 21 12466-124673