Interpolating numerical radius inequalities for matrices

被引:0
作者
Ahmad Al-Natoor
Omar Hirzallah
Fuad Kittaneh
机构
[1] Isra University,Department of Mathematics, Faculty of Sciences
[2] The Hashemite University,Department of Mathematics, Faculty of Science
[3] The University of Jordan,Department of Mathematics
来源
Advances in Operator Theory | 2024年 / 9卷
关键词
Numerical radius; Unitarily invariant norm; Commutator; Positive semidefinite matrix; Inequality; 15A60; 47A12; 47A30; 47B15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove interpolating numerical radius inequalities involving the generalized numerical radii induced by unitarily invariant norms. These inequalities refine well-known interpolating norm inequalities. Several related numerical radius inequalities are also established.
引用
收藏
相关论文
共 47 条
[1]  
Abu-Omar A(2015)Numerical radius inequalities for Linear Algebra Appl. 468 18-26
[2]  
Kittaneh F(2019) operator matrices Linear Algebra Appl. 569 323-334
[3]  
Abu-Omar A(2019)A generalization of the numerical radius Linear Algebra Appl. 581 72-84
[4]  
Kittaneh F(2022)Hilbert–Schmidt numerical radius inequalities for operator matrices Linear Algebra Appl. 633 303-315
[5]  
Aldalabih A(2018)Unitarily invariant norm inequalities for positive semidefinite matrices Banach J. Math. Anal. 12 955-969
[6]  
Kittaneh F(2022)Interpolating inequalities for functions of positive semidefinite matrices Linear Multilinear Algebra 70 4498-4507
[7]  
Al-Natoor A(2022)Singular value and norm inequalities for positive semidefinite matrices Positivity 26 11-146
[8]  
Benzamia S(2023)Further unitarily invariant norm inequalities for positive semidefinite matrices Linear Algebra Appl. 657 127-479
[9]  
Kittaneh F(2015)Norm inequalities involving the weighted numerical radii of operators Oper. Matrices 9 475-2829
[10]  
Al-Natoor A(2021)Interpolating between the arithmetic–geometric mean and Cauchy–Schwarz matrix norm inequalities Linear Multilinear Algebra 69 2813-136