A New Approach to Numerical Computation of Hausdorff Dimension of Iterated Function Systems: Applications to Complex Continued Fractions

被引:0
作者
Richard S. Falk
Roger D. Nussbaum
机构
[1] Rutgers University,Department of Mathematics
来源
Integral Equations and Operator Theory | 2018年 / 90卷
关键词
Hausdorff dimension; Positive transfer operators; Continued fractions; Primary 11K55; 37C30; Secondary: 65D05;
D O I
暂无
中图分类号
学科分类号
摘要
In a previous paper (Falk and Nussbaum, in Cm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^m$$\end{document} Eigenfunctions of Perron–Frobenius operators and a new approach to numerical computation of hausdorff dimension: applications in R1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^1$$\end{document}, 2016. ArXiv e-prints arXiv:1612.00870), the authors developed a new approach to the computation of the Hausdorff dimension of the invariant set of an iterated function system or IFS and studied some applications in one dimension. The key idea, which has been known in varying degrees of generality for many years, is to associate to the IFS a parametrized family of positive, linear, Perron-Frobenius operators Ls\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_s$$\end{document}. In our context, Ls\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_s$$\end{document} is studied in a space of Cm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^m$$\end{document} functions and is not compact. Nevertheless, it has a strictly positive Cm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^m$$\end{document} eigenfunction vs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_s$$\end{document} with positive eigenvalue λs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _s$$\end{document} equal to the spectral radius of Ls\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_s$$\end{document}. Under appropriate assumptions on the IFS, the Hausdorff dimension of the invariant set of the IFS is the value s=s∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=s_*$$\end{document} for which λs=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _s =1$$\end{document}. To compute the Hausdorff dimension of an invariant set for an IFS associated to complex continued fractions, (which may arise from an infinite iterated function system), we approximate the eigenvalue problem by a collocation method using continuous piecewise bilinear functions. Using the theory of positive linear operators and explicit a priori bounds on the partial derivatives of the strictly positive eigenfunction vs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_s$$\end{document}, we are able to give rigorous upper and lower bounds for the Hausdorff dimension s∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_*$$\end{document}, and these bounds converge to s∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_*$$\end{document} as the mesh size approaches zero. We also demonstrate by numerical computations that improved estimates can be obtained by the use of higher order piecewise tensor product polynomial approximations, although the present theory does not guarantee that these are strict upper and lower bounds. An important feature of our approach is that it also applies to the much more general problem of computing approximations to the spectral radius of positive transfer operators, which arise in many other applications.
引用
收藏
相关论文
共 49 条
  • [1] Bonsall FF(1958)Linear operators in complete positive cones Proc. Lond. Math. Soc. 8 53-75
  • [2] Bourgain J(2014)On Zaremba’s conjecture Ann. Math. 180 137-196
  • [3] Kontorovich A(1979)Hausdorff dimension of quasicircles Inst. Hautes Études Sci. Publ. Math. 50 11-25
  • [4] Bowen R(1982)Hausdorff dimensions of Cantor sets J. Reine Angew. Math. 331 192-206
  • [5] Bumby RT(1981)Convexity of the dominant eigenvalue of an essentially nonnegative matrix Proc. Am. Math. Soc. 81 657-658
  • [6] Cohen JE(1977)Continuants with bounded digits Mathematika 24 166-172
  • [7] Cusick TW(1978)Continuants with bounded digits, II Mathematika 25 107-109
  • [8] Cusick TW(1975)Some inequalities for the spectral radius of non-negative matrices and applications Duke Math. J. 42 459-490
  • [9] Friedland S(1983)On the Hausdorff dimension of a set of complex continued fractions Ill. J. Math. 27 334-345
  • [10] Karlin S(1941)The fractional dimensional theory of continued fractions Proc. Camb. Philos. Soc. 37 199-228