Optimal Embeddings of Bessel-Potential-Type Spaces into Generalized Hölder Spaces Involving k-Modulus of Smoothness

被引:0
作者
Amiran Gogatishvili
Júlio S. Neves
Bohumír Opic
机构
[1] Academy of Sciences of the Czech Republic,Institute of Mathematics
[2] University of Coimbra,CMUC, Department of Mathematics
[3] Technical University of Liberec,Department of Mathematics and Didactics of Mathematics
来源
Potential Analysis | 2010年 / 32卷
关键词
Slowly varying functions; Lorentz-Karamata spaces; Rearrangement-invariant Banach function spaces; Bessel potentials; (fractional) Sobolev-type spaces; Hölder-type spaces; Zygmund-type spaces; Embedding theorems; 46E35; 46E30; 26B35; 26A12; 26D15; 26A15; 26A16; 26B35; 47B38; 26D10;
D O I
暂无
中图分类号
学科分类号
摘要
We establish necessary and sufficient conditions for embeddings of Bessel potential spaces HσX(IRn) with order of smoothness σ ∈ (0, n), modelled upon rearrangement invariant Banach function spaces X(IRn), into generalized Hölder spaces (involving k-modulus of smoothness). We apply our results to the case when X(IRn) is the Lorentz-Karamata space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{p,q;b}({{\rm I\kern-.17em R}}^n)$\end{document}. In particular, we are able to characterize optimal embeddings of Bessel potential spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{\sigma}L_{p,q;b}({{\rm I\kern-.17em R}}^n)$\end{document} into generalized Hölder spaces. Applications cover both superlimiting and limiting cases. We also show that our results yield new and sharp embeddings of Sobolev-Orlicz spaces Wk + 1Ln/k(logL)α(IRn) and WkLn/k(logL)α(IRn) into generalized Hölder spaces.
引用
收藏
页码:201 / 228
页数:27
相关论文
共 45 条
[1]  
Aronszajn N(1963)On spaces of potentials connected with Ann. Inst. Fourier 13 211-306
[2]  
Mulla F(1961) classes, Part I Ann. Inst. Fourier 11 385-475
[3]  
Szeptycki P(1980)Theory of Bessel potentials, Part I Dissertationes Math (Rozprawy Mat.) 175 1-72
[4]  
Aronszajn N(1980)On Lorentz-Zygmund spaces Comm. Partial Differential Equations 5 773-789
[5]  
Smith K(1984)A note on limiting cases of Sobolev embeddings Proc. Amer. Math. Soc. 91 326-328
[6]  
Bennett C(1995)On the differentiability of functions in Studia Math. 115 151-181
[7]  
Rudnick K(1997)Double exponential integrability, Bessel potentials and embedding theorems J. Funct. Anal. 146 116-150
[8]  
Brézis H(2000)On embeddings of logarithmic Bessel potential spaces Q. J. Math. 51 185-209
[9]  
Wainger S(2000)Optimality of embeddings of logarithmic Bessel potential spaces J. Funct. Anal. 170 307-355
[10]  
DeVore RA(2000)Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms Canad. J. Math. 52 920-960