Matching quantum string corrections and circular Wilson loops in AdS4 × CP3

被引:0
作者
Daniel Medina-Rincon
机构
[1] Eidgenössische Technische Hochschule Zürich,Institut für Theoretische Physik
来源
Journal of High Energy Physics | / 2019卷
关键词
AdS-CFT Correspondence; Gauge-gravity correspondence; Wilson; ’t Hooft and Polyakov loops;
D O I
暂无
中图分类号
学科分类号
摘要
Recent progresses in the computation of quantum string corrections to holographic Wilson loops are extended to the case of strings in AdS4 × CP3. For this, the ratio of 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{1}{2} $$\end{document}-BPS circular and 16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{1}{6} $$\end{document}-BPS latitude fermionic Wilson loops in ABJM is considered at strong coupling by studying the corresponding semiclassical string partition functions. Explicit evaluation of fluctuation determinants using phaseshifts and diffeomorphism in-variant regulators leads to exact matching with the recent field theory proposal. Key to this computation is the choice of boundary conditions for massless fermions. In the limit for which the latitude Wilson loop has a trivial expectation value, the long known localization result for the 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{1}{2} $$\end{document}-BPS fermionic circular Wilson loop in ABJM is recovered.
引用
收藏
相关论文
共 103 条
[1]  
Maldacena JM(1999) = 6 Int. J. Theor. Phys. 38 1113-undefined
[2]  
Aharony O(2008)- JHEP 10 091-undefined
[3]  
Bergman O(1998)- Phys. Rev. Lett. 80 4859-undefined
[4]  
Jafferis DL(1998) = 4 Nucl. Phys. B 527 171-undefined
[5]  
Maldacena J(2012)- Commun. Math. Phys. 313 71-undefined
[6]  
Maldacena JM(1998)1/4 Nucl. Phys. Proc. Suppl. 68 1-undefined
[7]  
Rey S-J(2000)- Nucl. Phys. B 582 155-undefined
[8]  
Theisen S(2001) × J. Math. Phys. 42 2896-undefined
[9]  
Yee J-T(2006): JHEP 09 004-undefined
[10]  
Pestun V(2000) 1- JHEP 04 021-undefined