Quantum Dynamics of Periodic and Limit-Periodic Jacobi and Block Jacobi Matrices with Applications to Some Quantum Many Body Problems

被引:0
作者
David Damanik
Milivoje Lukic
William Yessen
机构
[1] Rice University,Mathematics Department MS
来源
Communications in Mathematical Physics | 2015年 / 337卷
关键词
Dynamical Localization; Periodic Case; Leibniz Rule; Dimensional Hilbert Space; Ballistic Transport;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate quantum dynamics with the underlying Hamiltonian being a Jacobi or a block Jacobi matrix with the diagonal and the off-diagonal terms modulated by a periodic or a limit-periodic sequence. In particular, we investigate the transport exponents. In the periodic case we demonstrate ballistic transport, while in the limit-periodic case we discuss various phenomena, such as quasi-ballistic transport and weak dynamical localization. We also present applications to some quantum many body problems. In particular, we establish for the anisotropic XY chain on Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}$$\end{document} with periodic parameters an explicit strictly positive lower bound for the Lieb–Robinson velocity.
引用
收藏
页码:1535 / 1561
页数:26
相关论文
共 39 条
[11]  
Gan Z.(1996)Operators with singular continuous spectrum. IV. Hausdorff dimensions, rank one perturbations, and localization J. Anal. Math. 69 153-174
[12]  
Damanik D.(2010)An exposition of the connection between limit-periodic potentials and profinite groups Math. Model. Nat. Phenom. 5 158-239
[13]  
Gan Z.(2012)Dynamical localization in disordered quantum spin systems Commun. Math. Phys. 315 215-445
[14]  
Damanik D.(1996)Quantum dynamics and decompositions of singular continuous spectra J. Funct. Anal. 142 406-257
[15]  
Gan Z.(1972)The finite group velocity of quantum spin systems Commun. Math. Phys. 28 251-466
[16]  
Damanik D.(1961)Two soluble models of an antiferromagnetic chain Ann. Phys. 16 407-176
[17]  
Tcheremchantsev S.(2010)Lieb–Robinson bounds in quantum many-body physics Contemp. Math. 529 141-463
[18]  
Damanik D.(1983)Examples of discrete Schrödinger operators with pure point spectrum Commun. Math. Phys. 88 447-064426-5
[19]  
Tcheremchantsev S.(2008)Many-body localization in the Heisenberg XXZ magnet in a random field Phys. Rev. B 77 064426-1-undefined
[20]  
del Rio R.(undefined)undefined undefined undefined undefined-undefined