Quantum Dynamics of Periodic and Limit-Periodic Jacobi and Block Jacobi Matrices with Applications to Some Quantum Many Body Problems

被引:0
作者
David Damanik
Milivoje Lukic
William Yessen
机构
[1] Rice University,Mathematics Department MS
来源
Communications in Mathematical Physics | 2015年 / 337卷
关键词
Dynamical Localization; Periodic Case; Leibniz Rule; Dimensional Hilbert Space; Ballistic Transport;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate quantum dynamics with the underlying Hamiltonian being a Jacobi or a block Jacobi matrix with the diagonal and the off-diagonal terms modulated by a periodic or a limit-periodic sequence. In particular, we investigate the transport exponents. In the periodic case we demonstrate ballistic transport, while in the limit-periodic case we discuss various phenomena, such as quasi-ballistic transport and weak dynamical localization. We also present applications to some quantum many body problems. In particular, we establish for the anisotropic XY chain on Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}$$\end{document} with periodic parameters an explicit strictly positive lower bound for the Lieb–Robinson velocity.
引用
收藏
页码:1535 / 1561
页数:26
相关论文
共 39 条
[1]  
Aizenman M.(2012)Absolutely continuous spectrum implies transport for quantum particles in a random potential on tree graphs J. Math. Phys. 53 095205-200
[2]  
Warzel S.(1998)Motion in periodic potentials Nonlinearity 11 175-918
[3]  
Asch J.(2009)On the spectrum and Lyapunov exponent of limit periodic Schrödinger operators Commun. Math. Phys. 288 907-120
[4]  
Knauf A.(1981)Almost periodic Schrödinger operators. I. Limit periodic potentials Commun. Math. Phys. 82 101-435
[5]  
Avila A.(2015)Localization for random block operators related to the XY spin chain Ann. Henri Poincaré 16 405-4025
[6]  
Avron J.(2010)Limit-periodic Schrödinger operators in the regime of positive Lyapunov exponents J. Funct. Anal. 258 4010-871
[7]  
Simon B.(2011)Spectral properties of limit-periodic Schrödinger operators Commun. Pure Appl. Anal. 10 859-49
[8]  
Chapman J.(2011)Limit-periodic Schrödinger operators with uniformly localized eigenfunctions J. Anal. Math. 115 33-827
[9]  
Stolz G.(2007)Upper bounds in quantum dynamics J. Am. Math. Soc. 20 799-1412
[10]  
Damanik D.(2010)A general description of quantum dynamical spreading over an orthonormal basis and applications to Schrödinger operators Discrete Contin. Dyn. Syst. 28 1381-200