Role of primordial black holes in the direct collapse scenario of supermassive black hole formation at high redshifts

被引:0
|
作者
Kanhaiya L. Pandey
A. Mangalam
机构
[1] Indian Institute of Astrophysics,
来源
Journal of Astrophysics and Astronomy | 2018年 / 39卷
关键词
Cosmology: theory; cosmology: dark ages; reionization; first stars; quasars: supermassive black holes;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we explore the possibility of accreting primordial black holes as the source of heating for the collapsing gas in the context of the direct collapse black hole scenario for the formation of super-massive black holes (SMBHs) at high redshifts, z∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z\sim $$\end{document} 6–7. One of the essential requirements for the direct collapse model to work is to maintain the temperature of the in-falling gas at ≈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx $$\end{document}104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^4$$\end{document} K. We show that even under the existing abundance limits, the primordial black holes of masses ≳\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gtrsim $$\end{document}10-2M⊙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-2}M_\odot $$\end{document}, can heat the collapsing gas to an extent that the H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{H}_2$$\end{document} formation is inhibited. The collapsing gas can maintain its temperature at 104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^4$$\end{document} K till the gas reaches a critical density nc≈103cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_{{c}} \,{\approx }\, 10^3~\hbox {cm}^{-3}$$\end{document}, at which the roto-vibrational states of H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{H}_2$$\end{document} approaches local thermodynamic equilibrium and H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{H}_2$$\end{document} cooling becomes inefficient. In the absence of H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{H}_2$$\end{document} cooling, the temperature of the collapsing gas stays at ≈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx $$\end{document}104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^4$$\end{document} K even as it collapses further. We discuss scenarios of subsequent angular momentum removal and the route to find collapse through either a supermassive star or a supermassive disk.
引用
收藏
相关论文
共 50 条
  • [31] Supermassive gravitinos and giant primordial black holes
    Meissner, Krzysztof A.
    Nicolai, Hermann
    PHYSICAL REVIEW D, 2020, 102 (10)
  • [32] Formation of supermassive black holes
    Volonteri, Marta
    ASTRONOMY AND ASTROPHYSICS REVIEW, 2010, 18 (03): : 279 - 315
  • [33] Formation of supermassive black holes
    Kainer, S
    Rose, WK
    EMERGENCE OF COSMIC STRUCTURE, 2003, 666 : 237 - 240
  • [34] The relation between black hole spin, star formation rate, and black hole mass for supermassive black holes
    Chen, Yongyun
    Gu, Qiusheng
    Fan, Junhui
    Guo, Xiaotong
    Xiong, Dingrong
    Yu, Xiaoling
    Zhong, Xiaogu
    Ding, Nan
    ASTRONOMY & ASTROPHYSICS, 2025, 694
  • [35] Formation of supermassive primordial black holes by Affleck-Dine mechanism
    Kawasaki, Masahiro
    Murai, Kai
    PHYSICAL REVIEW D, 2019, 100 (10)
  • [36] Formation of supermassive black holes
    Marta Volonteri
    The Astronomy and Astrophysics Review, 2010, 18 : 279 - 315
  • [37] Direct Collapse Supermassive Black Holes from Relic Particle Decay
    Lu, Yifan
    Picker, Zachary S. C.
    Kusenko, Alexander
    PHYSICAL REVIEW LETTERS, 2024, 133 (09)
  • [38] Low-mass black holes as the remnants of primordial black hole formation
    Greene, Jenny E.
    NATURE COMMUNICATIONS, 2012, 3
  • [39] Low-mass black holes as the remnants of primordial black hole formation
    Jenny E. Greene
    Nature Communications, 3
  • [40] CAN DIRECT COLLAPSE BLACK HOLES LAUNCH GAMMA-RAY BURSTS AND GROW TO SUPERMASSIVE BLACK HOLES?
    Matsumoto, Tatsuya
    Nakauchi, Daisuke
    Ioka, Kunihito
    Heger, Alexander
    Nakamura, Takashi
    ASTROPHYSICAL JOURNAL, 2015, 810 (01):