Role of primordial black holes in the direct collapse scenario of supermassive black hole formation at high redshifts

被引:0
|
作者
Kanhaiya L. Pandey
A. Mangalam
机构
[1] Indian Institute of Astrophysics,
来源
Journal of Astrophysics and Astronomy | 2018年 / 39卷
关键词
Cosmology: theory; cosmology: dark ages; reionization; first stars; quasars: supermassive black holes;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we explore the possibility of accreting primordial black holes as the source of heating for the collapsing gas in the context of the direct collapse black hole scenario for the formation of super-massive black holes (SMBHs) at high redshifts, z∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z\sim $$\end{document} 6–7. One of the essential requirements for the direct collapse model to work is to maintain the temperature of the in-falling gas at ≈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx $$\end{document}104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^4$$\end{document} K. We show that even under the existing abundance limits, the primordial black holes of masses ≳\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gtrsim $$\end{document}10-2M⊙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-2}M_\odot $$\end{document}, can heat the collapsing gas to an extent that the H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{H}_2$$\end{document} formation is inhibited. The collapsing gas can maintain its temperature at 104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^4$$\end{document} K till the gas reaches a critical density nc≈103cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_{{c}} \,{\approx }\, 10^3~\hbox {cm}^{-3}$$\end{document}, at which the roto-vibrational states of H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{H}_2$$\end{document} approaches local thermodynamic equilibrium and H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{H}_2$$\end{document} cooling becomes inefficient. In the absence of H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{H}_2$$\end{document} cooling, the temperature of the collapsing gas stays at ≈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx $$\end{document}104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^4$$\end{document} K even as it collapses further. We discuss scenarios of subsequent angular momentum removal and the route to find collapse through either a supermassive star or a supermassive disk.
引用
收藏
相关论文
共 50 条
  • [21] Formation of supermassive black holes by direct collapse in pre-galactic haloes
    Begelman, Mitchell C.
    Volonteri, Marta
    Rees, Martin J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 370 (01) : 289 - 298
  • [22] Ellipsoidal collapse and primordial black hole formation
    Kuhnel, Florian
    Sandstad, Marit
    PHYSICAL REVIEW D, 2016, 94 (06)
  • [23] Primordial seeds of supermassive black holes
    Kawasaki, Masahiro
    Kusenko, Alexander
    Yanagida, Tsutomu T.
    PHYSICS LETTERS B, 2012, 711 (01) : 1 - 5
  • [24] Supermassive black holes from primordial black hole seeds -: art. no. 064015
    Düchting, N
    PHYSICAL REVIEW D, 2004, 70 (06): : 064015 - 1
  • [25] Supermassive black holes formed by direct collapse of inflationary perturbations
    Nakama, Tomohiro
    Suyama, Teruaki
    Yokoyama, Jun'ichi
    PHYSICAL REVIEW D, 2016, 94 (10)
  • [26] Impact of baryonic streaming velocities on the formation of supermassive black holes via direct collapse
    Latif, M. A.
    Niemeyer, J. C.
    Schleicher, D. R. G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 440 (04) : 2969 - 2975
  • [27] Role of Magnetic Fields in the Formation of Direct Collapse Black Holes
    Latif, Muhammad A.
    Schleicher, Dominik R. G.
    Khochfar, Sadegh
    ASTROPHYSICAL JOURNAL, 2023, 945 (02):
  • [28] Dynamics of a superdense cluster of black holes and the formation of the Galactic supermassive black hole
    Chassonnery, P.
    Capuzzo-Dolcetta, R.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 504 (03) : 3909 - 3921
  • [29] Threshold of primordial black hole formation in nonspherical collapse
    Yoo, Chul-Moon
    Harada, Tomohiro
    Okawa, Hirotada
    PHYSICAL REVIEW D, 2020, 102 (04)
  • [30] Supermassive primordial black holes from inflation
    Hooper, Dan
    Ireland, Aurora
    Krnjaic, Gordan
    Stebbins, Albert
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (04):