New integrable problems in the dynamics of particle and rigid body

被引:0
作者
A. A. Elmandouh
机构
[1] King Faisal University,Department of Mathematics and Statistics, Faculty of Science
[2] Mansoura University,Department of Mathematics, Faculty of Science
来源
Acta Mechanica | 2015年 / 226卷
关键词
Rigid Body; Gaussian Curvature; Euclidean Plane; Integrable Problem; Point Transformation;
D O I
暂无
中图分类号
学科分类号
摘要
In the present article, a new two-dimensional integrable system containing 17 free parameters is introduced. For giving certain values for these parameters, new integrable problems can be constructed, which generalize some known previous problems, and in some cases, we can restore some previous integrable problems. Two new integrable problems are announced, describing the motion in an Euclidean plane and on a pseudo-sphere. In the irreversible case, a new integrable problem in rigid body dynamics, which generalizes Goriachev–Chaplygin’s case (Varshav Univ Izvest 3:1–13, 1916), Yehia’s case (Mech Res Commun 23:423–427, 1996) and Elmandouh’s case (Acta Mech 226:2461–2472, 2015), is announced.
引用
收藏
页码:3749 / 3762
页数:13
相关论文
共 51 条
[1]  
Bertrand J.(1857)Quelques-unes des forms les plus simple que puissant presenter les integrables des equations differentialles du movement d’un point materiel J. Math. Pure Appl. 2 113-153
[2]  
Darboux G.(1901)Sur un problem de mecanique Arch. Neerl. 6 371-377
[3]  
Kowalevski S.V.(1889)Sur le problem de la rotation d’un crops solid autor d’un point fixe Acta Math. 12 177-232
[4]  
Chaplygin S.A.(1903)A new partial solution of the problem of motion of a rigid body in a liquid Trudy Otdel. Fiz. Nauk Obsh. Luib. Est. 11 7-10
[5]  
Hall L.S.(1983)A theory of exact and approximate configurational invariants Phys. D 8 90-116
[6]  
Yehia H.M.(2006)Two dimensional conservative mechanical systems with quartic second integral Regul. Chaotic. Dyn. 11 103-122
[7]  
Grammaticos B.(1984)Hamiltonian with high-order integrals and the “weak-Painleve” concept J. Math. Phys. 25 3470-3473
[8]  
Dorizzi B.(1990)On Hamiltonian systems in two degrees of freedom with invariants quartic in the momenta of form J. Math. Phys. 31 600-604
[9]  
Ramani A.(2002)A unified treatment of quartic invariants at fixed and arbitrary energy J. Math. Phys. 43 4041-4059
[10]  
Evans N.W.(1999)Super integrable systems on the two dimensional sphere J. Math. Phys. 43 431-451