Artificial intelligence-based MRI radiomics and radiogenomics in glioma

被引:18
作者
Fan, Haiqing [1 ]
Luo, Yilin [1 ]
Gu, Fang [1 ]
Tian, Bin [1 ]
Xiong, Yongqin [1 ]
Wu, Guipeng [1 ]
Nie, Xin [1 ]
Yu, Jing [1 ]
Tong, Juan [1 ]
Liao, Xin [1 ]
机构
[1] Guizhou Med Univ, Dept Med Imaging, Affiliated Hosp, Guiyang 550000, Guizhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Glioma; Radiomics; Radiogenomics; MRI; Artificial intelligence; Machine learning; TEXTURE ANALYSIS; RADIATION NECROSIS; CONSENSUS RECOMMENDATIONS; MULTIPARAMETRIC MRI; IMAGING PREDICTORS; TUMOR RECURRENCE; SURVIVAL; GLIOBLASTOMA; FEATURES; CLASSIFICATION;
D O I
10.1186/s40644-024-00682-y
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The specific genetic subtypes that gliomas exhibit result in variable clinical courses and the need to involve multidisciplinary teams of neurologists, epileptologists, neurooncologists and neurosurgeons. Currently, the diagnosis of gliomas pivots mainly around the preliminary radiological findings and the subsequent definitive surgical diagnosis (via surgical sampling). Radiomics and radiogenomics present a potential to precisely diagnose and predict survival and treatment responses, via morphological, textural, and functional features derived from MRI data, as well as genomic data. In spite of their advantages, it is still lacking standardized processes of feature extraction and analysis methodology among different research groups, which have made external validations infeasible. Radiomics and radiogenomics can be used to better understand the genomic basis of gliomas, such as tumor spatial heterogeneity, treatment response, molecular classifications and tumor microenvironment immune infiltration. These novel techniques have also been used to predict histological features, grade or even overall survival in gliomas. In this review, workflows of radiomics and radiogenomics are elucidated, with recent research on machine learning or artificial intelligence in glioma. AI-based radiomics and radiogenomics aim to provide aid in diagnosis and prediction with higher accuracy.The introduction of MRI-based radiomics and radiogenomics analyses represents a non-invasive and cost-efficient adjunct tool that can extract quantitative information to augment clinical decision making.Radiomics and radiogenomics present a potential to precisely diagnose and predict survival and treatment responses.
引用
收藏
页数:16
相关论文
共 135 条
[1]   Incidence of Tumour Progression and Pseudoprogression in High-Grade Gliomas: a Systematic Review and Meta-Analysis [J].
Abbasi, Abdul W. ;
Westerlaan, Henriette E. ;
Holtman, Gea A. ;
Aden, Kamal M. ;
van Laar, Peter Jan ;
van der Hoorn, Anouk .
CLINICAL NEURORADIOLOGY, 2018, 28 (03) :401-411
[2]   Clinical applications of artificial intelligence and radiomics in neuro-oncology imaging [J].
Abdel Razek, Ahmed Abdel Khalek ;
Alksas, Ahmed ;
Shehata, Mohamed ;
AbdelKhalek, Amr ;
Abdel Baky, Khaled ;
El-Baz, Ayman ;
Helmy, Eman .
INSIGHTS INTO IMAGING, 2021, 12 (01)
[3]   The Potential of Radiomic-Based Phenotyping in PrecisionMedicine A Review [J].
Aerts, Hugo J. W. L. .
JAMA ONCOLOGY, 2016, 2 (12) :1636-1642
[4]   Radiomics for precision medicine in glioblastoma [J].
Aftab, Kiran ;
Aamir, Faiqa Binte ;
Mallick, Saad ;
Mubarak, Fatima ;
Pope, Whitney B. ;
Mikkelsen, Tom ;
Rock, Jack P. ;
Enam, Syed Ather .
JOURNAL OF NEURO-ONCOLOGY, 2022, 156 (02) :217-231
[5]   Glioblastoma: pathology, molecular mechanisms and markers [J].
Aldape, Kenneth ;
Zadeh, Gelareh ;
Mansouri, Sheila ;
Reifenberger, Guido ;
von Deimling, Andreas .
ACTA NEUROPATHOLOGICA, 2015, 129 (06) :829-848
[6]  
Ammari S, 2021, Diagnostics (Basel), V11
[7]   Assessment of Glioblastoma Response in the Era of Bevacizumab: Longstanding and Emergent Challenges in the Imaging Evaluation of Pseudoresponse [J].
Arevalo, Octavio D. ;
Soto, Carolina ;
Rabiei, Pejman ;
Kamali, Arash ;
Ballester, Leomar Y. ;
Esquenazi, Yoshua ;
Zhu, Jay-Jiguang ;
Riascos, Roy Francisco .
FRONTIERS IN NEUROLOGY, 2019, 10
[8]   Radiomic MRI Phenotyping of Glioblastoma: Improving Survival Preciction [J].
Bae, Sohi ;
Choi, Yoon Seong ;
Ahn, Sung Soo ;
Chang, Jong Hee ;
Kang, Seok-Gu ;
Kim, Eui Hyun ;
Kim, Se Hoon ;
Lee, Seung-Koo .
RADIOLOGY, 2018, 289 (03) :797-806
[9]   Edge Contrast of the FLAIR Hyperintense Region Predicts Survival in Patients with High-Grade Gliomas following Treatment with Bevacizumab [J].
Bahrami, N. ;
Piccioni, D. ;
Karunamuni, R. ;
Chang, Y. -H. ;
White, N. ;
Delfanti, R. ;
Seibert, T. M. ;
Hattangadi-Gluth, J. A. ;
Dale, A. ;
Farid, N. ;
McDonald, C. R. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2018, 39 (06) :1017-1024
[10]   Molecular classification of patients with grade II/III glioma using quantitative MRI characteristics [J].
Bahrami, Naeim ;
Hartman, Stephen J. ;
Chang, Yu-Hsuan ;
Delfanti, Rachel ;
White, Nathan S. ;
Karunamuni, Roshan ;
Seibert, Tyler M. ;
Dale, Anders M. ;
Hattangadi-Gluth, Jona A. ;
Piccioni, David ;
Farid, Nikdokht ;
McDonald, Carrie R. .
JOURNAL OF NEURO-ONCOLOGY, 2018, 139 (03) :633-642