Z-eigenvalues based structured tensors: Mz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}_z$$\end{document}-tensors and strong Mz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}_z$$\end{document}-tensors

被引:0
作者
Changxin Mo
Chaoqian Li
Xuezhong Wang
Yimin Wei
机构
[1] Fudan University,School of Mathematical Sciences
[2] Yunnan University,School of Mathematics and Statistics
[3] Hexi University,School of Mathematics and Statistics
[4] Fudan University,School of Mathematical Sciences and Shanghai Key Laboratory of Contemporary Applied Mathematics
关键词
-tensor; -eigenvalue; -tensor; -tensor; Positive definiteness; Stability of nonlinear system; 15A18; 15A69;
D O I
10.1007/s40314-019-0926-1
中图分类号
学科分类号
摘要
The positive (semi-)definiteness of even-order tensors has been widely studied in these years due to its applications in various aspects, such as spectral hypergraph theory, automatic control, polynomial theory, stochastic process, magnetic resonance imaging and so on. It has been shown that M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}-tensors, B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}$$\end{document}-tensors, H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document}-tensors, Hilbert tensors and stochastic tensors can be positive definite under proper conditions. However, there are still many positive definite tensors that can not be determined by the above criteria. In this paper, we provide a new class of positive definite tensors whose non-diagonal entries can be positive compared to (strong) M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}-tensors, and we call it strong Mz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}_z$$\end{document}-tensors, which can arise from discretizing differential equations, since it is based on Z-eigenvalues rather than H-eigenvalues traditionally. Moreover, we show that an even-order (strong) M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}-tensor must be an (a strong) Mz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}_z$$\end{document}-tensor, which reflects the inclusion relationship between even-order M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}-tensors and Mz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}_z$$\end{document}-tensors. We also introduce (strong) Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}_z$$\end{document}-tensors, as a generalization of (strong) Mz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}_z$$\end{document}-tensors, and its positive semi-definiteness (positive definiteness) has been studied. Finally, some conditions are given for a tensor to be an (a strong) Mz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}_z$$\end{document}-tensor and we use it to study the stability of a high-order nonlinear system.
引用
收藏
相关论文
共 50 条
[21]   Tensor Methods for Solving Symmetric M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}$$\end{document}-tensor Systems [J].
Ze-Jia Xie ;
Xiao-Qing Jin ;
Yi-Min Wei .
Journal of Scientific Computing, 2018, 74 (1) :412-425
[22]   Further Results for Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Z$\end{document}-Eigenvalue Localization Theorem for Higher-Order Tensors and Their Applications [J].
Liang Xiong ;
Jianzhou Liu .
Acta Applicandae Mathematicae, 2020, 170 (1) :229-264
[23]   A new preconditioner of the tensor splitting iterative method for solving multi-linear systems with M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}-tensors [J].
Lu-Bin Cui ;
Xiao-Qing Zhang ;
Shi-Liang Wu .
Computational and Applied Mathematics, 2020, 39 (3)
[24]   The extremal spectral radii of k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-uniform supertrees [J].
Honghai Li ;
Jia-Yu Shao ;
Liqun Qi .
Journal of Combinatorial Optimization, 2016, 32 (3) :741-764
[25]   Improving the Gauss–Seidel iterative method for solving multi-linear systems with M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}-tensors [J].
Malihe Nobakht-Kooshkghazi ;
Mehdi Najafi-Kalyani .
Japan Journal of Industrial and Applied Mathematics, 2024, 41 (2) :1061-1077
[26]   On the characteristic polynomial of the Aα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_\alpha $$\end{document}-matrix for some operations of graphs [J].
João Domingos Gomes da Silva Junior ;
Carla Silva Oliveira ;
Liliana Manuela Gaspar Cerveira da Costa .
Computational and Applied Mathematics, 2023, 42 (5)
[27]   A new preconditioned SOR method for solving multi-linear systems with an M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}$$\end{document}-tensor [J].
Dongdong Liu ;
Wen Li ;
Seak-Weng Vong .
Calcolo, 2020, 57 (2)
[28]   The γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-diagonally dominant degree of Schur complements and its applications [J].
Zhenhua Lyu ;
Lixin Zhou ;
Junye Ma .
Computational and Applied Mathematics, 2024, 43 (6)
[29]   Eigenvalues of Generalized Shift Operators Over ℓp(τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^p(\tau )$$\end{document} Spaces [J].
Mahin Hajiabootorabi ;
Mohammad Reza Mardanbeigi .
Iranian Journal of Science, 2024, 48 (5) :1265-1270
[30]   A new preconditioned Gauss-Seidel method for solving M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}$$\end{document}-tensor multi-linear system [J].
Xuan-Le An ;
Xin-Mei Lv ;
Shu-Xin Miao .
Japan Journal of Industrial and Applied Mathematics, 2025, 42 (1) :245-258