Extended Modules and Ore Extensions

被引:13
作者
Artamonov V. [1 ]
Lezama O. [2 ]
Fajardo W. [2 ]
机构
[1] Moscow State University, Moscow
[2] Universidad Nacional de Colombia, Bogotá
关键词
Extended modules and rings; Ore extensions; Quillen–Suslin’s methods;
D O I
10.1007/s40304-015-0081-y
中图分类号
学科分类号
摘要
In this paper, we study extended modules for a special class of Ore extensions. We will assume that R is a ring and A will denote the Ore extension A: = R[ x1, … , xn; σ] for which σ is an automorphism of R, xixj= xjxi and xir= σ(r) xi, for every 1 ≤ i, j≤ n. With some extra conditions over the ring R, we will prove Vaserstein’s, Quillen’s patching, Horrocks’, and Quillen–Suslin’s theorems for this type of non-commutative rings. © 2016, School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:189 / 202
页数:13
相关论文
共 11 条
[1]  
Artamonov V., Quantum polynomials, WSPC Proceedings, (2008)
[2]  
Artamonov V., Serre’s quantum problem, Russ. Math. Surv., 53, 4, pp. 657-730, (1998)
[3]  
Artamonov V., On projective modules over quantum polynomials, J. Math. Sci., 93, 2, pp. 135-148, (1999)
[4]  
Bass H., Proyective modules over algebras, Ann. Math., 73, pp. 532-542, (1962)
[5]  
Gallego C., Lezama O., Matrix approach to noncommutative stably free modules and Hermite rings, Algebra Discret. Math., 18, 1, pp. 110-139, (2014)
[6]  
d-Hermite rings and skew PBW extensions. to appear in Sao Paulo, J. Math. Sci.
[7]  
Kunz E., Introduction to Commutative Algebra and Algebraic Geometry, (1985)
[8]  
Lam T.Y., Serre’s Problem on Projective Modules, (2006)
[9]  
Lezama O., Reyes M., Some homological properties of skew PBW extensions, Commun. Algebra, 42, pp. 1200-1230, (2014)
[10]  
Lezama O., Et al., Ore and Goldie theorems for skew PBW extensions, Asian-European J. Math., 6, (2013)