Dissipativity of Runge-Kutta methods for a class of nonlinear functional-integro-differential equations

被引:0
作者
Qing Liao
Liping Wen
机构
[1] Xiangtan University,School of Mathematics and Computational Science
来源
Advances in Difference Equations | / 2017卷
关键词
functional-integro-differential equation; Runge-Kutta method; dissipativity; algebraic stability; dynamical systems;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the dissipativity of Runge-Kutta methods for a class of nonlinear functional-integro-differential equations (FIDEs). The dissipativity results of Runge-Kutta methods for the FIDEs are given. It is shown under a suitable condition that an algebraically stable Runge-Kutta method is dissipative when applied to the FIDEs. Numerical examples are given to illustrate the correctness of our theoretical results.
引用
收藏
相关论文
共 41 条
[1]  
Humphries AR(1994)Runge-Kutta methods for dissipative and gradient dynamical systems SIAM J. Numer. Anal. 31 1452-1485
[2]  
Stuart AM(1994)Model problems in numerical stability theory for initial value problems SIAM Rev. 36 226-257
[3]  
Humphries AR(1997)Global dissipativity for SIAM J. Numer. Anal. 34 119-142
[4]  
Stuart AM(1997)-stable methods BIT Numer. Math. 37 37-42
[5]  
Hill AT(2000)Dissipativity of Runge-Kutta methods in Hilbert spaces IMA J. Numer. Anal. 20 153-166
[6]  
Hill AT(2000)Dissipativity of Runge-Kutta methods for dynamical systems with delays Appl. Numer. Math. 35 11-22
[7]  
Huang CM(2004)Dissipativity of one-leg methods for dynamical systems with delays Math. Comput. Model. 40 1285-1296
[8]  
Huang CM(2004)Dissipativity of multistep Runge-Kutta methods for dynamical systems with delays Int. J. Bifurc. Chaos 14 1839-1845
[9]  
Huang CM(2007)Numerical and analytic dissipativity of the J. Comput. Math. 25 81-88
[10]  
Chang QS(2006)-method for delay differential equation with a bounded variable lag J. Math. Anal. Appl. 324 696-706