Oscillation Criteria for Second-Order Differential Equations of Neutral Type with Mixed Arguments

被引:0
作者
J. Dzurina
J. Busa
E. A. Airyan
机构
[1] Safarik University,
[2] Technical University,undefined
[3] Joint Institute for Nuclear Research,undefined
来源
Differential Equations | 2002年 / 38卷
关键词
Differential Equation; Partial Differential Equation; Ordinary Differential Equation; Functional Equation; Neutral Type;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:137 / 140
页数:3
相关论文
共 50 条
[41]   Interval oscillation criteria for second-order forced impulsive delay differential equations with damping term [J].
Thandapani, Ethiraju ;
Kannan, Manju ;
Pinelas, Sandra .
SPRINGERPLUS, 2016, 5
[42]   Coefficient stability of second-order operator-differential equations [J].
Jovanovic, BS ;
Matus, PP .
DIFFERENTIAL EQUATIONS, 2002, 38 (10) :1460-1466
[43]   Coefficient Stability of Second-Order Operator-Differential Equations [J].
B. S. Jovanović ;
P. P. Matus .
Differential Equations, 2002, 38 :1460-1466
[44]   Bounded positive solutions of nonlinear second-order differential equations [J].
Zhaoyang Yin .
Differential Equations, 2006, 42 :26-36
[45]   Bounded oscillation for second-order delay differential equations with unstable type in a critical case [J].
Tang, XH ;
Liu, YJ .
APPLIED MATHEMATICS LETTERS, 2003, 16 (03) :263-268
[46]   Linear Second-Order Partial Differential Equations of the Parabolic Type [J].
A. M. Ilyin ;
A. S. Kalashnikov ;
O. A. Oleynik .
Journal of Mathematical Sciences, 2002, 108 (4) :435-542
[47]   Some new oscillation criteria for second order quasi-linear neutral delay differential equations [J].
Xu, Run ;
Meng, Fanwei .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (01) :797-803
[48]   Oscillation of Even-Order Neutral Delay Differential Equations [J].
Tongxing Li ;
Zhenlai Han ;
Ping Zhao ;
Shurong Sun .
Advances in Difference Equations, 2010
[49]   Oscillation of one kind of second order neutral delay differential equations [J].
Li, Hui ;
Zhao, Yige ;
Sun, Shurong .
INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2020, 10 (03) :221-232
[50]   Oscillation of second-order dynamic equations [J].
Higgins, Raegan .
INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2011, 3 (1-2) :189-205