Well-Posedness of Differential Equations on Bp,qs(R;X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^s_{p,q}(\mathbb {R};X)$$\end{document} and Fp,qs(R;X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F^s_{p,q}(\mathbb {R};X)$$\end{document}

被引:0
作者
Shangquan Bu
Yuchen Zhong
机构
[1] Tsinghua University,Department of Mathematical Sciences
关键词
Well-posedness; Fourier multipliers; Besov spaces; Triebel–Lizorkin spaces; Primary 30H25; Secondly 34G10; 42A38; 42A45;
D O I
10.1007/s00009-023-02291-8
中图分类号
学科分类号
摘要
Using operator-valued Fourier multiplier theorems on Bp,qs(R;X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^{s}_{p,q}({\mathbb {R}};X)$$\end{document} (resp. Fp,qs(R;X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F^{s}_{p,q}({\mathbb {R}};X)$$\end{document}), weighted Besov spaces Bp,qs,ω(R;X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^{s, \omega }_{p,q}(\mathbb {R}; X)$$\end{document} (resp. Triebel–Lizorkin spaces Fp,qs,ω(R;X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F^{s, \omega }_{p,q}(\mathbb {R}; X)$$\end{document}) on the real line and the Carleman transform, we characterize the well-posedness of differential equations u′(t)=Au(t)+f(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u'(t)=Au(t)+f(t)$$\end{document} and u′′(t)+γu′(t)=Au(t)+f(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u''(t)+\gamma u'(t)=Au(t)+f(t)$$\end{document} on Bp,qs(R;X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^{s}_{p,q}(\mathbb {R};X)$$\end{document} (resp. Fp,qs(R;X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F^{s}_{p,q}(\mathbb {R};X)$$\end{document}), where γ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \in \mathbb {R}$$\end{document}, 1≤p,q≤∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le p,q\le \infty $$\end{document} (resp. 1≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le p<\infty $$\end{document}), s>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>0$$\end{document} and A is a closed linear operator defined on a Banach space X.
引用
收藏
相关论文
共 38 条
[1]  
Amann H(1997)Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications Math. Nachr. 186 5-56
[2]  
Aparicio R(2020)Besov maximal regularity for a class of degenerate integro-differential equations with infinite delay in Banach spaces Math. Methods Appl. Sci. 43 7239-7268
[3]  
Keyantuo V(2020)-maximal regularity for a class of degenerate integro-differential equations with infinite delay in Banach spaces J. Fourier Anal. Appl. 26 34-39
[4]  
Aparicio R(2002)The operator-valued Marcinkiewicz multiplier theorem and maximal regularity Math. Z. 240 311-343
[5]  
Keyantuo V(2004)Operator-valued Fourier multipliers on periodic Besov spaces and applications Proc. Edinb. Math. Soc. 47 15-33
[6]  
Arendt W(2005)Sums of bisectorial operators and applications Int. Equ. Oper. Theory 52 299-321
[7]  
Bu S(2006)Maximal J. Evol. Equ. 6 773-790
[8]  
Arendt W(2009)-regularity for parabolic and elliptic equations on the line Taiwan. J. Math. 13 1063-1076
[9]  
Bu S(2005)Periodic solutions of delay equations in Besov spaces and Triebel–Lizorkin spaces Acta Math. Sci. Ser. B 25 599-609
[10]  
Arendt W(2005)Operator-valued Fourier multiplier theorems on Triebel spaces Math. Z. 251 751-781