Functional renormalization group approach to the Yang-Lee edge singularity

被引:0
|
作者
X. An
D. Mesterházy
M. A. Stephanov
机构
[1] University of Illinois at Chicago,Department of Physics
[2] University of Bern,Albert Einstein Center for Fundamental Physics
来源
Journal of High Energy Physics | / 2016卷
关键词
Field Theories in Higher Dimensions; Renormalization Group; Nonperturbative Effects;
D O I
暂无
中图分类号
学科分类号
摘要
We determine the scaling properties of the Yang-Lee edge singularity as described by a one-component scalar field theory with imaginary cubic coupling, using the nonperturbative functional renormalization group in 3 ≤ d ≤ 6 Euclidean dimensions. We find very good agreement with high-temperature series data in d = 3 dimensions and compare our results to recent estimates of critical exponents obtained with the four-loop ϵ = 6 − d expansion and the conformal bootstrap. The relevance of operator insertions at the corresponding fixed point of the RG β functions is discussed and we estimate the error associated with O∂4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O}\left({\partial}^4\right) $$\end{document} truncations of the scale-dependent effective action.
引用
收藏
相关论文
共 50 条
  • [1] THE YANG-LEE EDGE SINGULARITY BY THE PHENOMENOLOGICAL RENORMALIZATION-GROUP
    UZELAC, K
    JULLIEN, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (05): : L151 - L155
  • [2] Functional renormalization group approach to the Yang - Lee edge singularity
    An, X.
    Mesterhazy, D.
    Stephanov, M. A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (07):
  • [3] Multicriticality in Yang-Lee edge singularity
    Lencses, Mate
    Miscioscia, Alessio
    Mussardo, Giuseppe
    Takacs, Gabor
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (02)
  • [4] YANG-LEE SINGULARITY AND THE MOBILITY EDGE
    KAPITULNIK, A
    SHAPIR, Y
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (07): : L243 - L248
  • [5] YANG-LEE EDGE SINGULARITY FROM A REAL-SPACE RENORMALIZATION-GROUP METHOD
    UZELAC, K
    PFEUTY, P
    JULLIEN, R
    PHYSICAL REVIEW LETTERS, 1979, 43 (12) : 805 - 808
  • [6] YANG-LEE EDGE SINGULARITY ON FRACTALS
    KNEZEVIC, M
    SOUTHERN, BW
    PHYSICAL REVIEW B, 1986, 34 (07): : 4966 - 4968
  • [7] Multicriticality in Yang-Lee edge singularity
    Máté Lencsés
    Alessio Miscioscia
    Giuseppe Mussardo
    Gábor Takács
    Journal of High Energy Physics, 2023
  • [8] Density of Yang-Lee zeros and Yang-Lee edge singularity for the antiferromagnetic Ising model
    Kim, SY
    NUCLEAR PHYSICS B, 2005, 705 (03) : 504 - 520
  • [9] YANG-LEE EDGE SINGULARITY IN SPHERICAL MODELS
    KURTZE, DA
    FISHER, ME
    JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (03) : 205 - 218
  • [10] YANG-LEE EDGE SINGULARITY IN THE HIERARCHICAL MODEL
    BAKER, GA
    FISHER, ME
    MOUSSA, P
    PHYSICAL REVIEW LETTERS, 1979, 42 (10) : 615 - 618