Geometric construction of Heisenberg–Weil representations for finite unitary groups and Howe correspondences

被引:0
作者
Naoki Imai
Takahiro Tsushima
机构
[1] The University of Tokyo,Graduate School of Mathematical Sciences
[2] Chiba University,Department of Mathematics and Informatics, Faculty of Science
来源
European Journal of Mathematics | 2023年 / 9卷
关键词
Weil representation; Howe correspondence; Lusztig induction; Finite unitary group; 20C33; 11F27;
D O I
暂无
中图分类号
学科分类号
摘要
We give a geometric construction of the Heisenberg–Weil representation of a finite unitary group by the middle étale cohomology of an algebraic variety over a finite field, whose rational points give a unitary Heisenberg group. Using also a Frobenius action, we give a geometric realization of the Howe correspondence for (Sp2n,O2-)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\textrm{Sp}_{2n},\textrm{O}_2^-)$$\end{document} over any finite field including characteristic two. As an application, we show that unipotency is preserved under the Howe correspondence.
引用
收藏
相关论文
共 37 条
[1]  
Adams J(1993)Unipotent representations and reductive dual pairs over finite fields Trans. Amer. Math. Soc. 340 309-321
[2]  
Moy A(1996)Correspondance de Howe pour les groupes réductifs sur les corps finis Duke Math. J. 83 353-397
[3]  
Aubert A-M(2006)Coxeter orbits and modular representations Nagoya Math. J. 183 1-34
[4]  
Michel J(1976)Representations of reductive groups over finite fields Ann. Math. 103 103-161
[5]  
Rouquier R(2014)Parabolic Deligne–Lusztig varieties Adv. Math. 257 136-218
[6]  
Bonnafé C(2009)Deligne–Lusztig restriction of a Gelfand–Graev module Ann. Sci. Éc. Norm. Supér. 42 653-674
[7]  
Rouquier R(1972)The characters of the finite symplectic group Osaka J. Math. 9 75-94
[8]  
Deligne P(1977), J. Algebra 46 54-101
[9]  
Lusztig G(2007)Weil representations associated to finite fields Sel. Math . (N.S.) 13 465-481
[10]  
Digne F(2004)The geometric Weil representation Trans. Amer. Math. Soc. 356 4969-5023