Schrödinger evolution of superoscillations under different potentials

被引:23
作者
Aharonov Y. [1 ]
Colombo F. [2 ]
Struppa D.C. [1 ]
Tollaksen J. [1 ]
机构
[1] Schmid College of Science and Technology, Chapman University, Orange, 92866, CA
[2] Politecnico di Milano, Dipartimento di Matematica, Via E. Bonardi, 9, Milan
关键词
Evolution of superoscillations; Potentials; Schrodinger equation;
D O I
10.1007/s40509-018-0161-2
中图分类号
学科分类号
摘要
Superoscillations appear in several branches of science and technology and in particular they are the outcome of weak measurements. So it important to study the evolution of superoscillatory functions as initial data for the Schrödinger equation when the Hamiltonian operator contains different potentials. Since the most important functions appearing in weak measurements are not squared integrable it is necessary to study the evolution problem using techniques that use convolution operators acting on spaces of entire functions. In this paper we give an introduction to this technique and we give the state of the art for this investigation together with some new results, in which we consider time dependent Hamiltonians. © 2018, Chapman University.
引用
收藏
页码:485 / 504
页数:19
相关论文
共 28 条
[1]  
Aharonov Y., Albert D., Vaidman L., How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100, Phys. Rev. Lett., 60, pp. 1351-1354, (1988)
[2]  
Aharonov Y., Colombo F., Nussinov S., Sabadini I., Struppa D.C., Tollaksen J., Superoscillation phenomena in SO(3), Proc. R. Soc. A., 468, pp. 3587-3600, (2012)
[3]  
Aharonov Y., Colombo F., Sabadini I., Struppa D.C., Tollaksen J., Some mathematical properties of superoscillations, J. Phys. A, 44, (2011)
[4]  
Aharonov Y., Colombo F., Sabadini I., Struppa D.C., Tollaksen J., On some operators associated to superoscillations, Complex Anal. Oper. Theory, 7, pp. 1299-1310, (2013)
[5]  
Aharonov Y., Colombo F., Sabadini I., Struppa D.C., Tollaksen J., On the Cauchy problem for the Schrödinger equation with superoscillatory initial data, J. Math. Pures Appl., 99, pp. 165-173, (2013)
[6]  
Aharonov Y., Colombo F., Sabadini I., Struppa D.C., Tollaksen J., Superoscillating sequences as solutions of generalized Schrödinger equations, J. Math. Pures Appl., 103, pp. 522-534, (2015)
[7]  
Aharonov Y., Colombo F., Sabadini I., Struppa D.C., Tollaksen J., On superoscillations longevity: A windowed Fourier transform approach, Quantum Theory: A Two-Time Success Story, pp. 313-325, (2014)
[8]  
Aharonov Y., Colombo F., Sabadini I., Struppa D.C., Tollaksen J., Evolution of superoscillatory data, J. Phys. A, 47, (2014)
[9]  
Aharonov Y., Colombo F., Sabadini I., Struppa D.C., Tollaksen J., The mathematics of superoscillations, Mem. Am. Math. Soc., 247, 1174, (2017)
[10]  
Aharonov Y., Colombo F., Sabadini I., Struppa D.C., Tollaksen J., Evolution of superoscillatory initial data in several variables in uniform electric field, J. Phys. A, 50, 18, (2017)