Impulsive surfaces on dynamical systems

被引:0
作者
E. M. Bonotto
M. C. Bortolan
T. Caraballo
R. Collegari
机构
[1] Universidade de São Paulo,Instituto de Ciências Matemáticas e de Computação
[2] Universidade Federal de Santa Catarina,Departamento de Matemática
[3] Universidad de Sevilla,Dpto. Ecuaciones Diferenciales y Análisis Numérico
来源
Acta Mathematica Hungarica | 2016年 / 150卷
关键词
impulsive set; hypersurface; dynamical system; primary 53A05; secondary 34A37;
D O I
暂无
中图分类号
学科分类号
摘要
This work is devoted to the construction of impulsive sets in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^n}$$\end{document}. In the literature, there are many examples of impulsive dynamical systems whose impulsive sets are chosen in an abstract way, and in this paper we present sufficient conditions to characterize impulsive sets in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^n}$$\end{document} which satisfy some “tube conditions” and ensure a good behavior of the flow. Moreover, we present some examples to illustrate the theoretical results.
引用
收藏
页码:209 / 216
页数:7
相关论文
共 5 条
  • [1] Bonotto E. M.(2007)Flows of characteristic 0 J. Math. Anal. Appl. 332 81-96
  • [2] Bonotto E. M.(2007) in impulsive semidynamical systems J. Math. Anal. Appl. 326 869-881
  • [3] Federson M.(2014)Topological conjugation and asymptotic stability in impulsive semidynamical systems Math. 65 47-59
  • [4] Bonotto E. M.(undefined)Uniform attractors of discontinuous semidynamical systems, Collect undefined undefined undefined-undefined
  • [5] Ferreira J. C.(undefined)undefined undefined undefined undefined-undefined