Challenges in unsupervised clustering of single-cell RNA-seq data

被引:728
作者
Kiselev, Vladimir Yu [1 ]
Andrews, Tallulah S. [1 ]
Hemberg, Martin [1 ]
机构
[1] Wellcome Sanger Inst, Wellcome Genome Campus, Hinxton, England
关键词
SEQUENCING DATA; GENE-EXPRESSION; IDENTIFICATION; HETEROGENEITY; ATLAS; DYNAMICS; STATES; NOISE; MAPS;
D O I
10.1038/s41576-018-0088-9
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Single-cell RNA sequencing (scRNA-seq) allows researchers to collect large catalogues detailing the transcriptomes of individual cells. Unsupervised clustering is of central importance for the analysis of these data, as it is used to identify putative cell types. However, there are many challenges involved. We discuss why clustering is a challenging problem from a computational point of view and what aspects of the data make it challenging. We also consider the difficulties related to the biological interpretation and annotation of the identified clusters.
引用
收藏
页码:273 / 282
页数:10
相关论文
共 115 条
[1]  
10x Genomics, 2017, 10X GEN SINGL CELL G
[2]   Cell type discovery using single-cell transcriptomics: implications for ontological representation [J].
Aevermann, Brian D. ;
Novotny, Mark ;
Bakken, Trygve ;
Miller, Jeremy A. ;
Diehl, Alexander D. ;
Osumi-Sutherland, David ;
Lasken, Roger S. ;
Lein, Ed S. ;
Scheuermann, Richard H. .
HUMAN MOLECULAR GENETICS, 2018, 27 (R1) :R40-R47
[3]  
Aibar S, 2017, NAT METHODS, V14, P1083, DOI [10.1038/nmeth.4463, 10.1038/NMETH.4463]
[4]  
Andrews T. S., 2017, BIORXIV, DOI [10.1101/065094, DOI 10.1101/065094]
[5]   destiny: diffusion maps for large-scale single cell data in R [J].
Angerer, Philipp ;
Haghverdi, Laleh ;
Buettner, Maren ;
Theis, Fabian J. ;
Marr, Carsten ;
Buettner, Florian .
BIOINFORMATICS, 2016, 32 (08) :1241-1243
[6]  
[Anonymous], 2016, NUCL ACIDS RES, DOI DOI 10.1093/NAR/GKW430
[7]  
[Anonymous], 2017, Graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells, DOI [DOI 10.1101/208819, 10.1101/208819]
[8]  
[Anonymous], 2018, MATCHSCORE MATCHING, DOI DOI 10.1101/314831
[9]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[10]   Cell type discovery and representation in the era of high-content single cell phenotyping [J].
Bakken, Trygve ;
Cowell, Lindsay ;
Aevermann, Brian D. ;
Novotny, Mark ;
Hodge, Rebecca ;
Miller, Jeremy A. ;
Lee, Alexandra ;
Chang, Ivan ;
McCorrison, Jamison ;
Pulendran, Bali ;
Qian, Yu ;
Schork, Nicholas J. ;
Lasken, Roger S. ;
Lein, Ed S. ;
Scheuermann, Richard H. .
BMC BIOINFORMATICS, 2017, 18