共 32 条
- [21] On the Diophantine equation Cx2+D=2yq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cx^{2}+D=2y^{q}$$\end{document} The Ramanujan Journal, 2020, 53 (2) : 389 - 397
- [22] On the Diophantine equation Ln-Lm=2·3a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{n}-L_{m}=2\cdot 3^{a}$$\end{document} Periodica Mathematica Hungarica, 2019, 79 (2) : 210 - 217
- [23] On the resolution of the Diophantine equation Un+Um=xq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_n + U_m = x^q$$\end{document}On the resolution of the Diophantine...P. K. Bhoi et al. The Ramanujan Journal, 2025, 66 (2)
- [24] On the Diophantine equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\dfrac{ax^{n+2l}+c}{abt^{2}x^{n}+c}{\displaystyle\frac{ax^{n+2l}+c}{abt^{2}x^{n}+c}}=by^{2}$ \end{document} Acta Mathematica Hungarica, 2011, 133 (4) : 342 - 358
- [25] On the Diophantine equation ∑j=1kjPjp=Pnq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum_{j=1}^{k}jP_j^p=P_n^q$$\end{document} Acta Mathematica Hungarica, 2020, 162 (2) : 647 - 676
- [26] On integral graphs which belong to the class\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline {\alpha K_{a,a} \cup \beta {\rm K}_{b,b} } $$ \end{document} Journal of Applied Mathematics and Computing, 2006, 20 (1-2) : 61 - 74
- [27] On integral graphs which belong to the class\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline {\alpha K_a \cup \beta K_b } $$ \end{document} Journal of Applied Mathematics and Computing, 2004, 14 (1-2) : 39 - 49
- [28] On the Diophantine Equation cx2+p2m=4yn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$cx^2+p^{2m}=4y^n$$\end{document} Results in Mathematics, 2021, 76 (2)
- [29] On the Diophantine Equation dx2+p2aq2b=4yp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$dx^2+p^{2a}q^{2b}=4y^p$$\end{document} Results in Mathematics, 2022, 77 (1)
- [30] The estimate for mean values on prime numbers relative to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{4} {p} = \frac{1} {{n_1 }} + \frac{1} {{n_2 }} + \frac{1} {{n_3 }} $\end{document} Science China Mathematics, 2012, 55 (3) : 465 - 474