On the Diophantine equation yp=f(x)g(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${y^{p} = \frac{f(x)}{g(x)}}$$\end{document}

被引:0
|
作者
S. Subburam
A. Togbé
机构
[1] Kalasalingam Academy of Research and Education,Department of Mathematics
[2] Purdue University Northwest,Department of Mathematics, Statistics, and Computer Science
关键词
Diophantine equation; monic polynomial; 11D41; 11D45;
D O I
10.1007/s10474-018-0900-1
中图分类号
学科分类号
摘要
We consider the Diophantine equation yp=f(x)g(x),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y^{p} = \frac{f(x)}{g(x)},$$\end{document}where x∈Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x \in \mathbb{Z}}$$\end{document} and y∈Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${y \in \mathbb{Q}}$$\end{document} are unknowns, f(x) and g(x) are non-zero integer polynomials in variable x and p is prime. We give bounds for x, when (x,y)∈Z×Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(x, y) \in \mathbb{Z} \times \mathbb{Q}}$$\end{document} is a solution of the equation. This improves the results of some recent papers.
引用
收藏
页码:1 / 9
页数:8
相关论文
共 32 条