共 32 条
- [1] A note on the Diophantine equation f(x)f(y)=f(z2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x)f(y)=f(z^2)$$\end{document} Periodica Mathematica Hungarica, 2015, 70 (2) : 209 - 215
- [2] On the Diophantine equation x2+C=yn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^2+C=y^n$$\end{document} Indian Journal of Pure and Applied Mathematics, 2024, 55 (1) : 69 - 77
- [3] On b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ b$$\end{document}-concatenations of two k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ k$$\end{document}-generalized Fibonacci numbers Acta Mathematica Hungarica, 2025, 175 (2) : 452 - 471
- [4] On the integer solutions of the Diophantine equations z2=f(x)2±f(y)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z^2=f(x)^2 \pm f(y)^2$$\end{document} Periodica Mathematica Hungarica, 2022, 85 (2) : 369 - 379
- [5] On the variant Qn!=Px\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q\left(n!\right)=P\left(x\right)$$\end{document} of the Brocard–Ramanujan Diophantine equation The Ramanujan Journal, 2024, 65 (4) : 1791 - 1798
- [6] On the Diophantine equations z2=f(x)2±f(y)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z^2=f(x)^2 \pm f(y)^2$$\end{document} involving quartic polynomials Periodica Mathematica Hungarica, 2019, 79 (1) : 25 - 31
- [7] The equation y2=x6+x2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y^2=x^6+x^2+1$$\end{document} revisited Indian Journal of Pure and Applied Mathematics, 2023, 54 (3) : 760 - 765
- [8] On the Diophantine equation x2+bm=cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{x^2+b^m=c^n}$$\end{document} with a2+b4=c2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{a^2+b^4=c^2}$$\end{document} Indian Journal of Pure and Applied Mathematics, 2022, 53 (1) : 162 - 169
- [9] On the Diophantine equation ∏i≤m(diy+qi)=f(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle \prod \nolimits _{i \le m}(d_iy + q_{i}) = f(x)$$\end{document} Afrika Matematika, 2018, 29 (7-8) : 1091 - 1095
- [10] Diophantine S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{S} $$\end{document}-quadruples with two primes which are twin Acta Mathematica Hungarica, 2019, 159 (2) : 589 - 602