On the Diophantine equation yp=f(x)g(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${y^{p} = \frac{f(x)}{g(x)}}$$\end{document}

被引:0
作者
S. Subburam
A. Togbé
机构
[1] Kalasalingam Academy of Research and Education,Department of Mathematics
[2] Purdue University Northwest,Department of Mathematics, Statistics, and Computer Science
关键词
Diophantine equation; monic polynomial; 11D41; 11D45;
D O I
10.1007/s10474-018-0900-1
中图分类号
学科分类号
摘要
We consider the Diophantine equation yp=f(x)g(x),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y^{p} = \frac{f(x)}{g(x)},$$\end{document}where x∈Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x \in \mathbb{Z}}$$\end{document} and y∈Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${y \in \mathbb{Q}}$$\end{document} are unknowns, f(x) and g(x) are non-zero integer polynomials in variable x and p is prime. We give bounds for x, when (x,y)∈Z×Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(x, y) \in \mathbb{Z} \times \mathbb{Q}}$$\end{document} is a solution of the equation. This improves the results of some recent papers.
引用
收藏
页码:1 / 9
页数:8
相关论文
共 25 条
[1]  
Balasubramanian R(1993)On, the equation Indag. Math., N. S. 4 257-267
[2]  
Shorey TN(1916)Über die obere Schranke des absoluten Betrages der Wurzelneiner algebraischen Gleichung Tôhoku Math. J. 10 167-171
[3]  
Fujiwara M(1972)On the Diophantine equation Acta Arith. 21 299-311
[4]  
Inkeri K(1943)Noen setninger om ubestemte likninger av formen Norsk. Mat. Tidskr. 25 17-20
[5]  
Ljunggren W(2007)On a Diophantine equation related to a conjecture of Erdős and Graham Glas. Mat. III 281-289
[6]  
Luca F(1999)A simple method for solving the Diophantine equation Elem. Math. 54 32-36
[7]  
Walsh PG(2008)Estimates for the solutions of certain Diophantine equations by Runge's method Int. J. Number Theory 4 475-493
[8]  
Poulakis D(1986)On the equation Indag. Math. 48 345-351
[9]  
Sankaranarayanan A(1976)New applications of Diophantine approximations to Diophantine equation Math. Scand. 39 5-18
[10]  
Saradha N(2012)The superelliptic equation J. Algebra and Number Theory Academia 2 331-385