On the signless Laplacian and normalized Laplacian spectrum of the zero divisor graphs

被引:0
作者
Mojgan Afkhami
Zahra Barati
Kazem Khashyarmanesh
机构
[1] University of Neyshabur,Department of Mathematics
[2] Kosar University of Bojnord,Department of Mathematics
[3] Ferdowsi University of Mashhad,Department of Pure Mathematics
来源
Ricerche di Matematica | 2022年 / 71卷
关键词
Zero divisor graph; Signless Laplacian spectrum; Normalized Laplacian spectrum; Smallest signless Laplacian eigenvalue; Largest signless Laplacian eigenvalue; 05C25; 05C50; 05C75;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a commutative ring with nonzero identity and let Γ(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (R)$$\end{document} denote the zero divisor graph of R. In this paper, we describe the signless Laplacian and normalized Laplacian spectrum of the zero divisor graph Γ(Zn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (\mathbb {Z}_n)$$\end{document}, and we determine these spectrums for some values of n. We also characterize the cases that 0 is a signless Laplacian eigenvalue of Γ(Zn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (\mathbb {Z}_n)$$\end{document}. Moreover, we find some bounds for some eigenvalues of the signless Laplacian and normalized Laplacian matrices of Γ(Zn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (\mathbb {Z}_n)$$\end{document}.
引用
收藏
页码:349 / 365
页数:16
相关论文
共 28 条
  • [1] Anderson DF(1999)The zero-divisor graph of a commutative ring J. Algebra 217 434-447
  • [2] Livingston PS(1998)Coloring of commutative rings J. Algebra 116 208-226
  • [3] Beck I(2020)Laplacian eigenvalues of the zero divisor graph of the ring Linear Algebra Appl. 584 267-286
  • [4] Chattopadhyay S(2007)Signless Laplacians of finite graphs Linear Algebra Appl. 423 155-171
  • [5] Patra KL(2010)On conjectures involving second largest signless Laplacian eigenvalue of graphs Linear Algebra Appl. 432 3018-3029
  • [6] Sahoo BK(2009)On Beck’s coloring of posets Discrete Math. 309 4584-4589
  • [7] Cvetkovic D(2010)The zerodivisor graph of a qoset Order 27 343-351
  • [8] Rowlinson P(2014)On iteration digraph and zero-divisor graph of the ring Czechoslovak Math. J. 64 611-628
  • [9] Simic SK(2007)Complemented zero-divisor graphs and Boolean rings J. Algebra 315 600-611
  • [10] Das KC(2014)Bounds on normalized Laplacian eigenvalues of graphs J. Inequal. Appl. 316 1-8