Toeplitz operators between Bergman–Orlicz spaces

被引:0
|
作者
Min Dong
Yongjiang Duan
Siyu Wang
机构
[1] Northeast Normal University,School of Mathematics and Statistics
来源
Annals of Functional Analysis | 2023年 / 14卷
关键词
Toeplitz operator; Bergman–Orlicz spaces; Carleson measures; Berezin transform; 47B35; 30H20;
D O I
暂无
中图分类号
学科分类号
摘要
Given a positive Borel measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} on the unit disk D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {D}}$$\end{document}, let Kzα(w)=1(1-z¯w)2+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^\alpha _z(w)=\frac{1}{(1-\overline{z}w)^{2+\alpha }}$$\end{document} be the reproducing kernel of Aα2(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_\alpha ^2({\mathbb {D}})$$\end{document} at z. The Toeplitz operators with symbol μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} are densely defined as follows: Tμ(f)(z)=∫Df(w)Kzα(w)¯dμ(w),f∈H∞(D).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} T_\mu (f)(z)= \int _{{\mathbb {D}}}f(w)\overline{K^\alpha _z(w)}{\text {d}}\mu (w),~f\in H^\infty ({\mathbb {D}}). \end{aligned}$$\end{document}Using the tools such as Carleson measures, Berezin transform and the average functions, we characterize the boundedness and compactness of Toeplitz operators Tμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\mu $$\end{document} acting between two different Bergman–Orlicz spaces AαΦ1(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_\alpha ^{\Phi _1}({\mathbb {D}})$$\end{document} and AαΦ2(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_\alpha ^{\Phi _2}({\mathbb {D}})$$\end{document} for two convex growth functions Φ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _1$$\end{document} and Φ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _2$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Toeplitz operators between Bergman-Orlicz spaces
    Dong, Min
    Duan, Yongjiang
    Wang, Siyu
    ANNALS OF FUNCTIONAL ANALYSIS, 2023, 14 (03)
  • [2] Toeplitz operators between distinct Bergman spaces
    Wang, Siyu
    Wang, Zipeng
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (11) : 2325 - 2336
  • [3] Toeplitz operators between distinct Bergman spaces
    Siyu Wang
    Zipeng Wang
    Science China Mathematics, 2022, 65 : 2325 - 2336
  • [4] Toeplitz Operators on Generalized Bergman Spaces
    Chailuek, Kamthorn
    Hall, Brian C.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 66 (01) : 53 - 77
  • [5] Toeplitz Operators on Generalized Bergman Spaces
    Kamthorn Chailuek
    Brian C. Hall
    Integral Equations and Operator Theory, 2010, 66 : 53 - 77
  • [6] Positive Toeplitz Operators Between the Harmonic Bergman Spaces
    Boo Rim Choe
    Hyungwoon Koo
    Heungsu Yi
    Potential Analysis, 2002, 17 : 307 - 335
  • [7] Positive Toeplitz operators between the harmonic Bergman spaces
    Choe, BR
    Koo, H
    Yi, HS
    POTENTIAL ANALYSIS, 2002, 17 (04) : 307 - 335
  • [8] Toeplitz Operators on a Class of Radially Weighted Harmonic Bergman Spaces
    Duan, Yongjiang
    Guo, Kunyu
    Wang, Siyu
    Wang, Zipeng
    POTENTIAL ANALYSIS, 2023, 59 (04) : 1621 - 1641
  • [9] ON COMPACTNESS OF TOEPLITZ OPERATORS IN BERGMAN SPACES
    Taskinen, Jari
    Virtanen, Jani
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2018, 59 (02) : 305 - 318
  • [10] Localization of Toeplitz Operators on Bergman Spaces
    卢玉峰
    Northeastern Mathematical Journal, 2001, (04) : 461 - 468