On the[inline-graphic not available: see fulltext]-Boundedness of Nonisotropic Spherical Riesz Potentials

被引:0
作者
MehmetZeki Sarikaya
Hüseyin Yildirim
机构
[1] Kocatepe University,Department of Mathematics, Faculty of Science and Arts
来源
Journal of Inequalities and Applications | / 2007卷
关键词
Variable Order; Potential Operator; Riesz Potential; Riesz Potential Operator;
D O I
暂无
中图分类号
学科分类号
摘要
We introduced the concept of nonisotropic spherical Riesz potential operators generated by the[inline-graphic not available: see fulltext]-distance of variable order on[inline-graphic not available: see fulltext]-sphere and its[inline-graphic not available: see fulltext]-boundedness were investigated.
引用
收藏
相关论文
共 20 条
  • [1] Besov OV(1966)The Doklady Akademii Nauk SSSR 169 1250-1253
  • [2] Il'in VP(1997)-estimates of a certain class of non-isotropically singular integrals Turkish Journal of Mathematics 21 153-157
  • [3] Lizorkin PI(2004)The Hardy-Littlewood-Sobolev inequality for non-isotropic Riesz potentials Applied Mathematics and Computation 153 757-762
  • [4] Çınar İ(1999)The Hardy-Littlewood-Sobolev inequality for Indian Journal of Pure and Applied Mathematics 30 545-556
  • [5] Çınar İ(2006)-distance Riesz potentials Turkish Journal of Mathematics 30 263-275
  • [6] Duru H(2006)On combination of Riesz potentials with non-isotropic kernels International Journal of Contemporary Mathematical Sciences 1 85-89
  • [7] Gadjiev AD(2006)The restriction and the continuity properties of potentials depending on Selçuk Journal of Applied Mathematics 7 17-23
  • [8] Dogru O(2006)-distance Lobachevskii Journal of Mathematics 22 47-57
  • [9] Sarikaya MZ(2006)On the International Journal of Pure and Applied Mathematics 31 337-344
  • [10] Yıldırım H(2005)-spherical Riesz potential generated by the Turkish Journal of Mathematics 29 381-387