Constant mean curvature spheres in Riemannian manifolds

被引:0
作者
F. Pacard
X. Xu
机构
[1] Université Paris 12,Laboratoire d’Analyse et de Mathématiques Appliquées
[2] Institut Universitaire de France,Department of Mathematics
[3] National University of Singapore,undefined
来源
manuscripta mathematica | 2009年 / 128卷
关键词
53A10;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the existence of embedded spheres with large constant mean curvature in any compact Riemannian manifold (M, g). This result partially generalizes a result of R. Ye which handles the case where the scalar curvature function of the ambient manifold (M, g) has non-degenerate critical points.
引用
收藏
页码:275 / 295
页数:20
相关论文
共 9 条
  • [1] Berard P.(1982)Inégalités isopérimétriques et applications Ann. Sci. Éc. Norm. Supér., IV. Sér. 15 513-541
  • [2] Meyer D.(2002)Sharp local isoperimetric inequalities involving the scalar curvature Proc. Am. Math. Soc. 130 2351-2361
  • [3] Druet O.(1991)Compact constant mean curvature surfaces in Euclidean three-space J. Differ. Geom. 33 683-715
  • [4] Kapouleas N.(1987)The Yamabe problem Bull. Am. Math. Soc. (N.S.) 17 37-91
  • [5] Lee J.M.(1997)On a singularly perturbed elliptic equation Adv. Differ. Equ. 2 955-980
  • [6] Parker T.H.(1968)The minimal number of critical points of a function on a compact manifold and the Lusternic–Schnirelman category Invent. Math. 6 197-244
  • [7] Li Y.Y.(1991)Foliation by constant mean curvature spheres Pac. J. Math. 147 381-396
  • [8] Takens F.(undefined)undefined undefined undefined undefined-undefined
  • [9] Ye R.(undefined)undefined undefined undefined undefined-undefined